We have previously shown that l-glucose, the non-caloric enantiomer of d-glucose, activates the human sweet taste receptor T1R2/T1R3 transiently expressed in HEK293T cells. Here, we show that d- and l-glucose can also activate T1R2 and T1R3 expressed without the counterpart monomer. Serine mutation to alanine in residue 147 in the binding site of T1R3 VFT domain, completely abolishes T1R3S147A activation by either l- or d-glucose, while T1R2/T1R3S147A responds in the same way as T1R2 expressed without its counterpart.
View Article and Find Full Text PDFTaste GPCRs are expressed in taste buds on the tongue and play a key role in food choice and consumption. They are also expressed extra-orally, with various physiological roles that are currently under study. Unraveling the roles of these receptors relies on the knowledge of their ligands.
View Article and Find Full Text PDFNaturally occurring sugars usually have d-chirality. While a change in chirality typically affects ligand-receptor interaction, non-caloric l-glucose was reported as sweet for humans. Here we show that l- and d-glucose have similar sensory detection thresholds (0.
View Article and Find Full Text PDFHydrogen to deuterium isotopic substitution has only a minor effect on physical and chemical properties of water and, as such, is not supposed to influence its neutral taste. Here we conclusively demonstrate that humans are, nevertheless, able to distinguish DO from HO by taste. Indeed, highly purified heavy water has a distinctly sweeter taste than same-purity normal water and can add to perceived sweetness of sweeteners.
View Article and Find Full Text PDFBitterDB (http://bitterdb.agri.huji.
View Article and Find Full Text PDF