Derived from axial structures, Sonic Hedgehog (Shh) is secreted into the paraxial mesoderm, where it plays crucial roles in sclerotome induction and myotome differentiation. Through conditional loss-of-function in quail embryos, we investigate the timing and impact of Shh activity during early formation of sclerotome-derived vertebrae and ribs, and of lateral mesoderm-derived sternum. To this end, Hedgehog interacting protein (Hhip) was electroporated at various times between days 2 and 5.
View Article and Find Full Text PDFTo ensure the formation of a properly patterned embryo, multiple processes must operate harmoniously at sequential phases of development. This is implemented by mutual interactions between cells and tissues that together regulate the segregation and specification of cells, their growth and morphogenesis. The formation of the spinal cord and paraxial mesoderm derivatives exquisitely illustrate these processes.
View Article and Find Full Text PDFSonic hedgehog (Shh), produced in the notochord and floor plate, is necessary for both neural and mesodermal development. To reach the myotome, Shh has to traverse the sclerotome and a reduction of sclerotomal Shh affects myotome differentiation. By investigating loss and gain of Shh function, and floor-plate deletions, we report that sclerotomal Shh is also necessary for neural tube development.
View Article and Find Full Text PDFBackground: The dorsal midline region of the neural tube that results from closure of the neural folds is generally termed the roof plate (RP). However, this domain is highly dynamic and complex, and is first transiently inhabited by prospective neural crest (NC) cells that sequentially emigrate from the neuroepithelium. It only later becomes the definitive RP, the dorsal midline cells of the spinal cord.
View Article and Find Full Text PDFBackground: VICKZ (IGF2BP1,2,3/ZBP1/Vg1RBP/IMP1,2,3) proteins bind RNA and help regulate many RNA-mediated processes. In the midbrain region of early chick embryos, VICKZ is expressed in the neural folds and along the basal surface of the neural epithelium, but, upon neural tube closure, is down-regulated in prospective cranial neural crest (CNC) cells, concomitant with their emigration and epithelial-to-mesenchymal transition (EMT). Electroporation of constructs that modulate cVICKZ expression demonstrates that this down-regulation is both necessary and sufficient for CNC EMT.
View Article and Find Full Text PDFThe development of a functional tissue requires coordination of the amplification of progenitors and their differentiation into specific cell types. The molecular basis for this coordination during myotome ontogeny is not well understood. Dermomytome progenitors that colonize the myotome first acquire myocyte identity and subsequently proliferate as Pax7-expressing progenitors before undergoing terminal differentiation.
View Article and Find Full Text PDFThe plane of cell divisions is pivotal for differential fate acquisition. Dermomyotome development provides an excellent system with which to investigate the link between these processes. In the central sheet of the early dermomyotome, single epithelial cells divide with a planar orientation.
View Article and Find Full Text PDFThe first wave of myoblasts which constitutes the post-mitotic myotome stems from the medial epithelial somite. Whereas medial pioneers extend throughout the entire mediolateral myotome at cervical and limb levels, at flank regions they are complemented laterally by a population of early myoblasts emerging from the lateral epithelial somite. These myoblasts delaminate underneath the nascent dermomyotome and become post-mitotic.
View Article and Find Full Text PDFThe somite and its intermediate derivatives, sclerotome and dermomyotome (DM), are composed of distinct subdomains based on lineage analysis and gene expression patterns. This sets the grounds for elucidating the mechanisms underlying differential cell specification and morphogenesis. By examining the in vivo roles of N-cadherin on discrete domains of the somitic epithelium at various times, our recent studies highlight the existence of a regional and temporal heterogeneity in cellular responsiveness.
View Article and Find Full Text PDFWe have previously shown that overall growth of the myotome in the mediolateral direction occurs in a coherent and uniform pattern. We asked whether development of the dermomyotome and resultant dermis follow a similar pattern or are, alternatively, controlled by restricted pools of stem cells driving directional growth. To this end, we studied cellular events that govern dermomyotome development and the regional origin of dermis.
View Article and Find Full Text PDFWe have previously found that the postmitotic myotome is formed by two successive waves of myoblasts. A first wave of pioneer cells is generated from the dorsomedial region of epithelial somites. A second wave originates from all four edges of the dermomyotome but cells enter the myotome only from the rostral and caudal lips.
View Article and Find Full Text PDF