To develop a cost-effective microbial cell factory for the production of biofuels and biochemicals, an understanding of tolerant mechanisms is vital for the construction of robust host strains. Here, we characterized a new function of a key metabolic transcription factor named Znf1 and its involvement in stress response in Saccharomyces cerevisiae to enhance tolerance to advanced biofuel, isobutanol. RNA-sequencing analysis of the wild-type versus the znf1Δ deletion strains in glucose revealed a new role for transcription factor Znf1 in the pentose phosphate pathway (PPP) and energy generation.
View Article and Find Full Text PDFFEMS Yeast Res
January 2024
Only trace amount of isobutanol is produced by the native Saccharomyces cerevisiae via degradation of amino acids. Despite several attempts using engineered yeast strains expressing exogenous genes, catabolite repression of glucose must be maintained together with high activity of downstream enzymes, involving iron-sulfur assimilation and isobutanol production. Here, we examined novel roles of nonfermentable carbon transcription factor Znf1 in isobutanol production during xylose utilization.
View Article and Find Full Text PDFEvolutionary engineering experiments, in combination with omics technologies, revealed genetic markers underpinning the molecular mechanisms behind acetic acid stress tolerance in the probiotic yeast Saccharomyces cerevisiae var. boulardii. Here, compared to the ancestral Ent strain, evolved yeast strains could quickly adapt to high acetic acid levels (7 g/L) and displayed a shorter lag phase of growth.
View Article and Find Full Text PDFBiofilm-mediated drug resistance is a key virulence factor of pathogenic microbes that cause a serious global health threat especially in immunocompromised individuals. Here, we investigated the antihyphal and antibiofilm activity of 19,20‑epoxycytochalasin Q (ECQ), a cytochalasin actin inhibitor isolated from medicinal mushroom Xylaria sp. BCC1067 against Candida albicans.
View Article and Find Full Text PDFThe demand for the production of herbal extracts for cosmetics, food, and health supplements, known as plant-based medicine, is rising globally. Incorporating herbal extracts could help to create higher value products due to the functional properties of bioactive compounds. Because the phytochemical composition could vary depending on the processing methods, a simple bioassay of herbal bioactive compounds is an important screening method for the purposes of functional characterization and quality assurance.
View Article and Find Full Text PDFBackground: Microbial derived-surfactants display low eco-toxicity, diverse functionality, high biodegradability, high specificity, and stability under extreme conditions. Sophorolipids are emerging as key biosurfactants of yeast origins, used in various industrial sectors to lower surface tension. Recently, sophorolipid complexes have been applied in biomedicals and agriculture to eradicate infectious problems related to human and plant fungal pathogens.
View Article and Find Full Text PDFFungi is a notable asset for drug discovery and production of pharmaceuticals; however, slow growth and poor product yields have hindered industrial utilization. Here, the mycelial biomass of sp. BCC 1067 was examined in parallel with the assessment of antimicrobial properties by using media-type selection.
View Article and Find Full Text PDFMicrob Cell Fact
March 2022
Background: Xylitol is a valuable pentose sugar alcohol, used in the food and pharmaceutical industries. Biotechnological xylitol production is currently attractive due to possible conversion from abundant and low-cost industrial wastes or agricultural lignocellulosic biomass. In this study, the transcription factor Znf1 was characterised as being responsible for the activation of cryptic xylose metabolism in a poor xylose-assimilating S.
View Article and Find Full Text PDFHigh ethanol levels can severely inhibit the growth of yeast cells and fermentation productivity. The ethanologenic yeast Saccharomyces cerevisiae activates several well-defined cellular mechanisms of ethanol stress response (ESR); however, the involved regulatory control remains to be characterized. Here, we report a new transcription factor of ethanol stress adaptation called Znf1.
View Article and Find Full Text PDFExcessive use of antibiotics has detrimental consequences, including antibiotic resistance and gut microbiome destruction. Probiotic-rich diets help to restore good microbes, keeping the body healthy and preventing the onset of chronic diseases. Honey contains not only prebiotic oligosaccharides but, like yogurt and fermented foods, is an innovative natural source for probiotic discovery.
View Article and Find Full Text PDFRepetitive uses of antifungals result in a worldwide crisis of drug resistance; therefore, natural fungicides with minimal side-effects are currently sought after. This study aimed to investigate antifungal property of 19, 20-epoxycytochalasin Q (ECQ), derived from medicinal mushroom Xylaria sp. BCC 1067 of tropical forests.
View Article and Find Full Text PDFMultidrug resistance is a highly conserved phenomenon among all living organisms and a major veritable public health problem worldwide. Repetitive uses of antibiotics lead to antimicrobial drug resistance. Here, 19,20-epoxycytochalasin Q (ECQ) was isolated from endophytic fungus Xylaria sp.
View Article and Find Full Text PDFSaccharomyces cerevisiae offers an attractive platform for synthesis of biofuels and biochemical; however, robust strains that can withstand high substrate concentration and fermentation conditions are required. To improve the yield and productivity of bioethanol, modification of glucose metabolism and cellular stress adaptation is investigated. Specifically, the role of Znf1 transcription factor in metabolic regulation of glucose is characterized.
View Article and Find Full Text PDFBenefits of whole grains as dietary supplements and active ingredients in health products have been promoted. Despite being neglected as an agricultural byproduct of polished rice, pigmented rice bran has emerged as a promising source of natural anti-aging compounds. Indeed, the extract of red rice bran Hom Dang cultivar contained rich phenolic acids and flavonoids.
View Article and Find Full Text PDFBackground: Orthosiphon aristatus (Blume) Miq. is a medicinal herb which is traditionally used for the treatment of diabetes and kidney diseases in South East Asia. Previous studies reported higher concentration of antioxidative phytochemicals, especially rosmarinic acid (ester of caffeic acid) and other caffeic acid derivatives in this plant extract than the other herbs such as rosemary and sage which are usually used as raw materials to produce rosmarinic acid supplement in the market.
View Article and Find Full Text PDFAim: To investigate antifungal potential of Xylaria sp. BIOTEC culture collection (BCC) 1067 extract against the model yeast Saccharomyces cerevisiae.
Materials & Methods: Antifungal property of extract, reactive oxygen species levels and cell survival were determined, using selected deletion strains.
Background: Efficient xylose alcoholic fermentation is one of the key to a successful lignocellulosic ethanol production. However, regulation of this process in the native xylose-fermenting yeasts is poorly understood. In this work, we paid attention to the transcriptional factor Cat8 and its possible role in xylose alcoholic fermentation in Ogataea (Hansenula) polymorpha.
View Article and Find Full Text PDFThe fundamental questions of how cells control growth and respond to stresses have captivated scientists for years. Despite the complexity of these cellular processes, we could approach this puzzle by asking our favorite model yeast, Saccharomyces cerevisiae, how it makes a critical decision to either proliferate, to rest in a quiescent state or to program itself to die. This review highlights the essentiality of transcriptional factors in the reprogramming of gene expression as a prime mechanism of cellular stress responses.
View Article and Find Full Text PDFIn this study, we characterize a new function for activator of stress response genes (Asg1) in fatty acid utilization. Asg1 is required for full activation of genes in several pathways, including β-oxidation (POX1, FOX2, and POT1), gluconeogenesis (PCK1), glyoxylate cycle (ICL1), triacylglycerol breakdown (TGL3), and peroxisomal transport (PXA1). In addition, the transcriptional activator Asg1 is found to be enriched on promoters of genes in β-oxidation and gluconeogenesis pathways, suggesting that Asg1 is directly involved in the control of fatty acid utilizing genes.
View Article and Find Full Text PDFThe ability to rapidly respond to nutrient changes is a fundamental requirement for cell survival. Here, we show that the zinc cluster regulator Znf1 responds to altered nutrient signals following glucose starvation through the direct control of genes involved in non-fermentative metabolism, including those belonged to the central pathways of gluconeogenesis (PCK1, FBP1 and MDH2), glyoxylate shunt (MLS1 and ICL1) and the tricarboxylic acid cycle (ACO1), which is demonstrated by Znf1-binding enrichment at these promoters during the glucose-ethanol shift. Additionally, reduced Pck1 and Fbp1 enzymatic activities correlate well with the data obtained from gene transcription analysis.
View Article and Find Full Text PDFMany zinc cluster proteins have been shown to play a role in the transcriptional regulation of glucose-repressible genes during glucose exhaustion and diauxic shift. Here, we studied an additional member of this family called Yer184c (herein called Tog1) for transcriptional regulator of oleate. Our results showed that a Δtog1 strain displays impaired growth with several non-fermentable carbons.
View Article and Find Full Text PDFUpon glucose depletion, a massive reprogramming of gene expression occurs in the yeast Saccharomyces cerevisiae for the use of alternate carbon sources such as the nonfermentable compounds ethanol and glycerol. This process is mediated by the master kinase Snf1 that controls the activity of various targets including the transcriptional regulators Cat8, Sip4 and Adr1. We have recently identified Rds2 as an additional player in this pathway.
View Article and Find Full Text PDFSaccharomyces cerevisiae preferentially uses glucose as a carbon source, but following its depletion, it can utilize a wide variety of other carbons including nonfermentable compounds such as ethanol. A shift to a nonfermentable carbon source results in massive reprogramming of gene expression including genes involved in gluconeogenesis, the glyoxylate cycle, and the tricarboxylic acid cycle. This review is aimed at describing the recent progress made toward understanding the mechanism of transcriptional regulation of genes responsible for utilization of nonfermentable carbon sources.
View Article and Find Full Text PDFIn Saccharomyces cerevisiae, RDS2 encodes a zinc cluster transcription factor with unknown function. Here, we unravel a key function of Rds2 in gluconeogenesis using chromatin immunoprecipitation-chip technology. While we observed that Rds2 binds to only a few promoters in glucose-containing medium, it binds many additional genes when the medium is shifted to ethanol, a nonfermentable carbon source.
View Article and Find Full Text PDF