Spectrochim Acta A Mol Biomol Spectrosc
December 2024
Sialic acid, a negatively charged nine-carbon monosaccharide, is mainly located at the terminal end of glycan chains on glycoproteins and glycolipids of cell surface and most secreted proteins. Elevated levels of sialylated glycans have been known as a hallmark in numerous cancers. As a result, sialic acid acts as a useful and accessible cancer biomarker for early cancer detection and monitoring the disease development during cancer treatment which is crucial in elevating the survival rate.
View Article and Find Full Text PDFSynthesis of Galβ1 → 3GlcNAc-repeating saccharides is limited mainly by the formation of less-reactive oxazolines. We herein report an expeditious approach that requires trichloroacetyloxazolines as reactive glycosyl donors. Using only two disaccharide building blocks, the iterative oxazoline formation and glycosylation synthesized hexa- and octasaccharides with overall yields of 47% and 26% in four and six steps, respectively.
View Article and Find Full Text PDFNew bioresources for catalytic application and fine chemical synthesis are the need of the hour. In an effort to find out new biocatalyst for oxidation-reduction reaction, leading to the synthesis of chiral intermediates, novel yeast were isolated from unique niche and employed for the synthesis of value added compounds. To determine the genetic relatedness of the isolated strain, HSB-15, sequence analysis of the internal transcribed spacer (ITS) and D1/D2 domains of the 26S rRNA gene sequence was carried out.
View Article and Find Full Text PDFSynthesis of type I LacNAc (Galβ1 → 3GlcNAc) oligosaccharides usually suffers from low yields. We herein report the efficient synthesis of type I LacNAc oligosaccharides by chemoselective glycosylation. With 16 relative reactivity values (RRVs) measured thiotoluenyl-linked disaccharide donors and acceptors, chemoselective glycosylations were investigated to obtain optimal conditions.
View Article and Find Full Text PDFIn the present study, we investigated the mechanism of cell death in due to treatment with sophorolipid (SL). SL is an extracellular glycolipid biosurfactant produced by various species of non-pathogenic yeasts and is known to inhibit the growth and biofilm formation of . This study revealed that treatment of cells with SL increases the ROS production and expression of oxidative stress-related genes significantly (, ).
View Article and Find Full Text PDF