The capability of locally engineering the nonlinear optical properties of media is crucial in nonlinear optics. Although poling is the most widely employed technique for achieving locally controlled nonlinearity, it leads only to a binary nonlinear state, which is equivalent to a discrete phase change of π in the nonlinear polarizability. Here, inspired by the concept of spin-rotation coupling, we experimentally demonstrate nonlinear metasurfaces with homogeneous linear optical properties but spatially varying effective nonlinear polarizability with continuously controllable phase.
View Article and Find Full Text PDFWe demonstrate an all-dielectric quantum electrodynamical nanowire-slab system with a single emitter that concentrates the extremely intense light at the scale of 10 × 75 nm(2). The quantum dot exhibits a record high 31-fold spontaneous decay rate enhancement, its optical saturation and blinking are strongly suppressed, and 80% of emission couples into a waveguide mode.
View Article and Find Full Text PDFWe experimentally demonstrate dramatically enhanced light-matter interaction for molecules placed inside the nanometer scale gap of a plasmonic waveguide. We observe spontaneous emission rate enhancements of up to about 60 times due to strong optical localization in two dimensions. This rate enhancement is a nonresonant nature of the plasmonic waveguide under study overcoming the fundamental bandwidth limitation of conventional devices.
View Article and Find Full Text PDF