Introduction: 3D-printed scaffolds have emerged as an alternative for addressing the current limitations encountered in bone reconstruction. This study aimed to systematically review the feasibility of using 3D bio-printed scaffolds as a material for bone grafting in animal models, focusing on femoral and tibial defects. The primary objective of this study was to evaluate the efficacy, safety, and overall impact of these scaffolds on bone regeneration.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
December 2016
Bioactive 3D composites play an important role in advanced biomaterial design to provide molecular coupling and improve integrity with the cellular environment of the native bone. In the present study, a hybrid lyophilized polymer composite blend of anionic charged sodium salt of carboxymethyl chitin and gelatin (CMChNa-GEL) reinforced with nano-rod agglomerated hydroxyapatite (nHA) has been developed with enhanced biocompatibility and tunable elasticity. The scaffolds have an open, uniform and interconnected porous structure with an average pore diameter of 157±30μm and 89.
View Article and Find Full Text PDFWe investigated deleterious changes that take place in mesenchymal stem cells (MSC) and its fracture healing competence in ovariectomy (Ovx)-induced osteopenia. MSC from bone marrow (BM) of ovary intact (control) and Ovx rats was isolated. (99m)Tc-HMPAO (Technitium hexamethylpropylene amine oxime) labeled MSC was systemically transplanted to rats and fracture tropism assessed by SPECT/CT.
View Article and Find Full Text PDFBone defects above critical size do not heal completely by itself and thus represent major clinical challenge to reconstructive surgery. Numerous bone substitutes have already been used to promote bone regeneration, however their use, particularly for critical-sized bone defects along with their long term in vivo safety and efficacy remains a concern. The present study was designed to obtain a complete healing of critical-size defect made in the proximal tibia of New Zealand White rabbit, using nano-hydroxyapatite/gelatin and chemically carboxymethylated chitin (n-HA/gel/CMC) scaffold construct.
View Article and Find Full Text PDF4-hydroxypanduratin A is a secondary metabolite of Boesenbergia pandurata Schult. (Fingerroot) plant with various pharmacological activities such as neuroprotective, potent antioxidant, antibacterial and antifungal. Flaviviral NS2B/NS3 protease activity is essential for polyprotein processing and viral replication for Japanese Encephalitis Virus (JEV), a major cause of Acute Encephaltis in Asia.
View Article and Find Full Text PDFThe study of Human immunodeficiency virus (HIV) in humans and animal models in last 31 years suggested that it is a causative agent of AIDS. This causes serious pandemic public health concern globally. It was reported that the HIV-1 reverse transcriptase (RT) played a critical role in the life cycle of HIV.
View Article and Find Full Text PDFTrichomonas vaginalis causes the trichomoniasis, in women and urethritis and prostate cancer in men. Its genome draft published by TIGR in 2007 presents many unusual genomic and biochemical features like, exceptionally large genome size, the presence of hydrogenosome, gene duplication, lateral gene transfer mechanism and the presence of miRNA. To understand some of genomic features we have performed a comparative analysis of metabolic pathways of the T.
View Article and Find Full Text PDFA novel three-dimensional (3D) scaffold has been developed from the unique combination of nanohydroxyapatite/gelatin/carboxymethyl chitin (n-HA/gel/CMC) for bone tissue engineering by using the solvent-casting method combined with vapor-phase crosslinking and freeze-drying. The surface morphology and physiochemical properties of the scaffold were investigated by dissolvability test, infrared absorption spectra (IR), X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), mechanical testing, and soaking in simulated body fluid (SBF). An optimized (composition and processing parameters) ratio of n-HA:gel:CMC (1:2:1), exhibited ideal porous structure with regular interconnected pores (75-250 μm) and higher mechanical strength.
View Article and Find Full Text PDF