Publications by authors named "Nitin Kachariya"

Arabidopsis (Arabidopsis thaliana) plants can produce photosynthetic tissue with active chloroplasts at temperatures as low as 4°C, and this process depends on the presence of the nuclear-encoded, chloroplast-localized RNA-binding protein CP29A. In this study, we demonstrate that CP29A undergoes phase separation in vitro and in vivo in a temperature-dependent manner, which is mediated by a prion-like domain (PLD) located between the two RNA recognition motif domains of CP29A. The resulting droplets display liquid-like properties and are found near chloroplast nucleoids.

View Article and Find Full Text PDF

The importance of RNA-binding proteins (RBPs) for plant responses to environmental stimuli and development is well documented. Insights into the portfolio of RNAs they recognize, however, clearly lack behind the understanding gathered in non-plant model organisms. Here, we characterize binding of the circadian clock-regulated Arabidopsis thaliana GLYCINE-RICH RNA-BINDING PROTEIN 7 (AtGRP7) to its target transcripts.

View Article and Find Full Text PDF

RNA-binding proteins (RBPs) control every RNA metabolic process by multiple protein-RNA and protein-protein interactions. Their roles have largely been analyzed by crude mutations, which abrogate multiple functions at once and likely impact the structural integrity of the large ribonucleoprotein particles (RNPs) these proteins function in. Using UV-induced RNA-protein crosslinking of entire cells, protein complex purification and mass spectrometric analysis, we identified >100 in vivo RNA crosslinks in 16 nuclear mRNP components in Saccharomyces cerevisiae.

View Article and Find Full Text PDF

Skp1(S-phase kinase-associated protein 1 - Homo sapiens) is an adapter protein of the SCF(Skp1-Cullin1-Fbox) complex, which links the constant components (Cul1-RBX) and the variable receptor (F-box proteins) in Ubiquitin E3 ligase. It is intriguing how Skp1 can recognise and bind to a variety of structurally different F-box proteins. For practical reasons, previous efforts have used truncated Skp1, and thus it has not been possible to track the crucial aspects of the substrate recognition process.

View Article and Find Full Text PDF

Loss of function mutations in the PTEN-induced kinase 1 (PINK1) kinase are causal for autosomal recessive Parkinson's disease (PD) whilst gain of function mutations in the LRRK2 kinase cause autosomal dominant PD. PINK1 indirectly regulates the phosphorylation of a subset of Rab GTPases at a conserved Serine111 (Ser111) residue within the SF3 motif. Using genetic code expansion technologies, we have produced stoichiometric Ser111-phosphorylated Rab8A revealing impaired interactions with its cognate guanine nucleotide exchange factor and GTPase activating protein.

View Article and Find Full Text PDF

Ubiquitination of proteins is required to regulate several cellular mechanisms in cells. Skp1-Cullin-1-F-box (SCF), the largest family of the RING E3 ligases, recognizes and carries out the poly-ubiquitination of many substrate proteins. SCF E3 ligase is a multi-component protein complex, and the human S-phase kinase-associated protein 1 (Skp1) is the adapter protein, which binds and presents the substrate binding protein F-box (FBP) to the rest of the E3 ligase.

View Article and Find Full Text PDF