The quest for a cost-effective, chemically-inert, robust and proton conducting membrane for flow batteries is at its paramount. Perfluorinated membranes suffer severe electrolyte diffusion, whereas conductivity and dimensional stability in engineered thermoplastics depend on the degree of functionalization. Herein, we report surface-modified thermally crosslinked polyvinyl alcohol-silica (PVA-SiO) membranes for the vanadium redox flow battery (VRFB).
View Article and Find Full Text PDFA low-voltage nongassing electroosmotic pump was assembled by sandwiching a silica frit between two carbon paper electrodes that were dip-coated with a paste consisting of phosphomolybdic acid/phosphotungstic acid (PMA/PTA)-encapsulated multiwalled carbon nanotubes (MWCNTs) and Nafion. The PMA/PTA encapsulation was a combined effect of their thermomigration and nanocapillary action in MWCNTs. The encapsulated MWCNTs retained desirable redox and charge transfer characteristics of PMA/PTA.
View Article and Find Full Text PDF