Objective: To determine if there are changes in structure and function of the retinal vasculature during and between migraine attacks using optical coherence tomography angiography (OCTA).
Background: Migraine attacks commonly include visual symptoms, but the potential role of the retina in these symptoms is not well understood. OCTA is a rapid, non-invasive imaging technique that is used to visualize the retinal microvasculature with high spatial resolution in a clinical setting.
Introduction: The ability to rapidly process speech sounds is integral not only for processing other's speech, but also for auditory processing of one's own speech, which allows for maintenance of speech accuracy. Deficits in rapid auditory processing have been demonstrated in autistic individuals, particularly those with language impairment. We examined rapid auditory processing for speech sounds in relation to performance on a battery of verbal communication measures to determine which aspects of verbal communication were associated with cortical auditory processing in a sample of individuals with autism.
View Article and Find Full Text PDFThe goal of this study was to identify the specific domains of language that may be affected by deficits in rapid auditory processing in individuals with ASD. Auditory evoked fields were collected from 63 children diagnosed with ASD in order to evaluate processing of puretone sounds presented in rapid succession. Measures of language and its components were assessed via standardized clinical tools to quantify expressive and receptive language, vocabulary, articulation, and phonological processing abilities.
View Article and Find Full Text PDFPurpose: The development of objective biomarkers for mild traumatic brain injury (mTBI) in the chronic period is an important clinical and research goal. Head trauma is known to affect the mechanisms that support the electrophysiological processing of information within and between brain regions, so methods like quantitative EEG may provide viable indices of brain dysfunction associated with even mTBI.
Methods: Resting-state, eyes-closed EEG data were obtained from 71 individuals with military-related mTBI and 82 normal comparison subjects without traumatic brain injury.
Objectives: The primary objective of this study was to explore the impact of noninvasive Vagal Nerve Stimulation (nVNS) on brain electrophysiology, as assessed through spontaneous resting-state EEG and stimulus-driven event-related potentials (ERPs).
Methods: A hand-held transcutaneous stimulator was placed on the neck over the main branch of the left vagus (active condition) or more laterally over neck muscles (sham condition), with two 120-sec long bursts of stimulation applied over a five-minute period. For each of eight neurotypical subjects, prior to stimulation, and then again beginning at 15, 120, and 240 min post-stimulation, ten minutes of background EEG data were collected, along with a series of ERPs-N100 auditory sensory-gating; the N1/P2 loudness dependent auditory evoked responses (LDAER); mismatch negativity; P300a; and P300b.
Rats poisoned with sarin enter into ahyper-cholinergic crisis characterized by excessive salivation, respiratory distress, tremors, seizures, and death. Through the use of rescue medications and an anticonvulsant, death can be avoided in many animals, with the long-term consequences of poisoning partly ameliorated, especially when countermeasures are made available immediately after exposure. However, when anticonvulsant measures are delayed by as little as 30 min, clinical, neurological, cognitive, and psychiatric abnormalities may persist long after the initial exposure.
View Article and Find Full Text PDFHumans today are routinely and increasingly presented with vast quantities of data that challenge their capacity for efficient processing. To restore the balance between man and machine, it is worthwhile to explore new methods for enhancing or accelerating this capacity. This study was designed to investigate the efficacy of transcranial DC stimulation (tDCS) to reduce training time and increase proficiency in spatial recognition using a simulated synthetic aperture radar (SAR) task.
View Article and Find Full Text PDFForward solutions with different levels of complexity are employed for localization of current generators, which are responsible for the electric and magnetic fields measured from the human brain. The influence of brain anisotropy on the forward solution is poorly understood. The goal of this study is to validate an anisotropic model for the intracranial electric forward solution by comparing with the directly measured 'gold standard'.
View Article and Find Full Text PDF