BMC Plant Biol
December 2024
Background: Anaerobic germination is a critical trait for rice cultivation, particularly in regions that experience flooding or waterlogging immediately after sowing. Under direct-seeded conditions, where rice is sown directly into the field without prior transplantation, the ability of seeds to germinate in anaerobic (oxygen-deficient) conditions becomes essential for successful crop establishment. This trait is especially relevant in areas prone to waterlogging, were traditional methods of rice cultivation, such as puddled transplanting, may be less viable.
View Article and Find Full Text PDFBackground: The lack of stable-high yielding and direct-seeded adapted varieties with better germination ability from deeper soil depth and availability of molecular markers are major limitation in achieving the maximum yield potential of rice under water and resource limited conditions. Development of high-throughput and trait-linked markers are of great interest in genomics-assisted breeding. The aim of present study was to develop and validate novel KASP (Kompetitive Allele-Specific PCR) markers associated with traits improving germination and seedling vigor of deep sown direct seeded rice (DSR).
View Article and Find Full Text PDFEssential oils are highly complex volatile chemical compounds utilized for food preservation. The present study compares the antibacterial, and antibiofilm activities of essential oils (EOs) and their blends. Three EOs-basil, clove, and lemongrass-and their blends were evaluated against five food-borne bacterial pathogens.
View Article and Find Full Text PDFBackground: Ongoing large-scale shift towards direct seeded rice (DSR) necessitates a convergence of breeding and genetic approaches for its sustenance and harnessing natural resources and environmental benefits. Improving seedling vigour remains key objective for breeders working with DSR. The present study aims to understand the genetic control of seedling vigour in deep sown DSR.
View Article and Find Full Text PDFNitrogen transport is one of the most important processes in plants mediated by specialized transmembrane proteins. Plants have two main systems for nitrogen uptake from soil and its transport within the system-a low-affinity transport system and a high-affinity transport system. Nitrate transporters are of special interest in cereal crops because large amount of money is spent on N fertilizers every year to enhance the crop productivity.
View Article and Find Full Text PDFAims: The aim of the present study was to evaluate the performance of 'high'-'low' yielding pyramided lines (PLs), having the same combinations of in Samba Mahsuri, MR219 and IR64-Sub1 genetic backgrounds, and to understand the genetic interactions among QTL and/with genetic background affecting grain yield.
Background: Epistasis regulates the expression of traits governed by several major/minor genes/QTL. Multiple pyramided lines (PLs) with the same grain yield QTL () combinations but possessing grain yield variability under different levels of reproductive stage drought stress were identified in different rice genetic backgrounds at International Rice Research Institute (IRRI).
The development and utilization of molecular-markers play an important role in genomics-assisted breeding during pyramiding of valuable genes. The aim of present study was to develop and validate a novel core-set of KASP (Kompetitive Allele-Specific PCR) markers associated with traits improving rice grain yield and adaptability under direct-seeded cultivation conditions. The 110 phenotypically validated KASP assays out of 171 designed KASP, include assays for biotic-resistance genes, anaerobic germination, root-traits, grain yield, lodging resistance and early-uniform emergence.
View Article and Find Full Text PDFThe phenomenal increase in the use of nitrogenous fertilizers coupled with poor nitrogen use efficiency is among the most important threats to the environment, economic, and social health. During the last 2 decades, a number of genomic regions associated with nitrogen use efficiency (NUE) and related traits have been reported by different research groups, but none of the stable and major effect QTL have been utilized in the marker-assisted introgression/pyramiding program. Compiling the data available in the literature could be very useful in identifying stable and major effect genomic regions associated with the root and NUE-related trait improving the rice grain yield.
View Article and Find Full Text PDFThe impact of qDTY12.1 in maintaining yield under drought has not been consistent across genetic backgrounds. We hypothesized that synergism or antagonism with additive-effect peripheral genes across the background genome either enhances or undermines its full potential.
View Article and Find Full Text PDFSeedling vigour is an important agronomic trait and is gaining attention in Asian rice (Oryza sativa) as cultivation practices shift from transplanting to forms of direct seeding. To understand the genetic control of rice seedling vigour in dry direct seeded (aerobic) conditions we measured multiple seedling traits in 684 accessions from the 3000 Rice Genomes (3K-RG) population in both the laboratory and field at three planting depths. Our data show that phenotyping of mesocotyl length in laboratory conditions is a good predictor of field performance.
View Article and Find Full Text PDFNitrogen is one of the most important macronutrients for crop growth and metabolism. To identify marker-trait associations for complex nitrogen use efficiency (NUE)-related agronomic traits, field experiments were conducted on nested synthetic wheat introgression libraries at three nitrogen input levels across two seasons. The introgression libraries were genotyped using the 35K Axiom Wheat Breeder's Array and genetic diversity and population structure were examined.
View Article and Find Full Text PDFNitrogen is an essential nutrient required in large quantities for the proper growth and development of plants. Nitrogen is the most limiting macronutrient for crop production in most of the world's agricultural areas. The dynamic nature of nitrogen and its tendency to lose soil and environment systems create a unique and challenging environment for its proper management.
View Article and Find Full Text PDFBy responding to the variable soil environments in which they are grown, the roots of rice crops are likely to contribute to yield stability across a range of soil moistures, nutrient levels, and establishment methods. In this study, we explored different approaches to quantification of root plasticity and characterization of its relationship with yield stability. Using four different statistical approaches (plasticity index, slope, AMMI, and factor analytic) on a set of 17 genotypes including several recently-developed breeding lines targeted to dry direct-seeding, we identified only very few direct relationships between root plasticity and yield stability.
View Article and Find Full Text PDFThere is an urgent need to breed dry direct-seeded adapted rice varieties in order to address the emerging scenario of water-labor shortage. The aim of this study was to develop high-yielding, direct-seeded adapted varieties utilizing biparental to multiparental crosses involving as many as six different parents in conventional breeding programs and 12 parents in genomics-assisted breeding programs. The rigorous single plant selections were followed from the F generation onwards utilizing phenotypic selection and quantitative trait locus (QTL)/gene-based/linked markers for tracking the presence of desirable alleles of targeted QTL/genes.
View Article and Find Full Text PDFRice (Oryza sativa L.) in rainfed marginal environments is prone to multiple abiotic and biotic stresses, which can occur in combination in a single cropping season and adversely affect rice growth and yield. The present study was undertaken to develop high-yielding, climate-resilient rice that can provide tolerance to multiple biotic and abiotic stresses.
View Article and Find Full Text PDFBackground: Reproductive-stage drought stress is a major impediment to rice production in rainfed areas. Conventional and marker-assisted breeding strategies for developing drought-tolerant rice varieties are being optimized by mining and exploiting adaptive traits, genetic diversity; identifying the alleles, and understanding their interactions with genetic backgrounds for their increased contribution to drought tolerance. Field experiments were conducted in this study to identify marker-trait associations (MTAs) involved in response to yield under reproductive-stage (RS) drought.
View Article and Find Full Text PDFOccurrence of multiple abiotic stresses in a single crop season has become more frequent than before. Most of the traditional donors possessing tolerance to abiotic stresses are tall, low-yielding with poor grain quality. To facilitate efficient use of complex polygenic traits in rice molecular breeding research, we undertook development of introgression lines in background of high-yielding, semi-dwarf varieties with good grain quality.
View Article and Find Full Text PDFRice is a staple food for half of the world's population. Changing climatic conditions, water and labour scarcity are the major challenges that shall limit future rice production. Dry direct-seeded rice (DDSR) is emerging as an efficient, resources conserving, mechanized, climate smart and economically viable strategy to be adopted as an alternative to puddled transplanted rice (TPR) with the potential to address the problem of labour-water shortages and ensure sustainable rice cultivation.
View Article and Find Full Text PDFDiabetes and other lifestyle disorders have been recognized as the leading cause of morbidity and mortality globally. Nuclear factor kappa B (NF-κB) is a major factor involved in the early pathobiology of diabetes and studies reveal that hyperglycemic conditions in body leads to NF-κB mediated activation of several cytokines, chemokines and inflammatory molecules. NF-κB family comprises of certain DNA-binding protein factors that elicit the transcription of pro-inflammatory molecules.
View Article and Find Full Text PDFQTLs for rice grain yield under reproductive stage drought stress (qDTY) identified earlier with low density markers have shown linkage drag and need to be fine mapped before their utilization in breeding programs. In this study, genotyping-by-sequencing (GBS) based high-density linkage map of rice was developed using two BCF mapping populations namely Swarna*2/Dular (3929 SNPs covering 1454.68 cM) and IR11N121*2/Aus196 (1191 SNPs covering 1399.
View Article and Find Full Text PDFIn the face of global water scarcity, a successful transition of rice cultivation from puddled to dry direct-seeded rice (DDSR) is a future need. A genome-wide association study was performed on a complex mapping population for 39 traits: 9 seedling-establishment traits, 14 root and nutrient-uptake traits, 5 plant morphological traits, 4 lodging resistance traits, and 7 yield and yield-contributing traits. A total of 10 significant marker-trait associations (MTAs) were found along with 25 QTLs associated with 25 traits.
View Article and Find Full Text PDFBackground: Puddled transplanted system of rice cultivation despite having several benefits, is a highly labor, water and energy intensive system. In the face of changing climatic conditions, a successful transition from puddled to dry direct seeded rice (DDSR) cultivation system looks must in future. Genome-wide association study was performed for traits including, roots and nutrient uptake (14 traits), plant-morphological (5 traits), lodging-resistance (4 traits) and yield and yield attributing traits (7 traits) with the aim to identify significant marker-trait associations (MTAs) for traits enhancing rice adaptability to dry direct-seeded rice (DDSR) system.
View Article and Find Full Text PDF