Iron is a potent catalyst of oxidative stress and cellular proliferation implicated in renal cell carcinoma (RCC) tumorigenesis, yet it also drives ferroptosis that suppresses cancer progression and represents a novel therapeutic target for advanced RCC. The von Hippel Lindau (VHL)/hypoxia-inducible factor-α (HIF-α) axis is a major regulator of cellular iron, and its inactivation underlying most clear cell (cc) RCC tumors introduces both iron dependency and ferroptosis susceptibility. Despite the central role for iron in VHL/HIF-α signaling and ferroptosis, RCC iron levels and their dynamics during RCC initiation/progression are poorly defined.
View Article and Find Full Text PDFIncreasing data implicate iron accumulation in tumorigenesis of the kidney, particularly the clear cell renal cell carcinoma (ccRCC) subtype. The von Hippel Lindau (VHL)/hypoxia inducible factor-α (HIF-α) axis is uniquely dysregulated in ccRCC and is a major regulator and regulatory target of iron metabolism, yet the role of iron in ccRCC tumorigenesis and its potential interplay with VHL inactivation remains unclear. We investigated whether ccRCC iron accumulation occurs due to increased cell dependency on iron for growth and survival as a result of VHL inactivation.
View Article and Find Full Text PDFThe central dysregulated pathway of clear cell (cc) renal cell carcinoma (RCC), the von Hippel Lindau/hypoxia inducible factor-α axis, is a key regulator of intracellular iron levels, however the role of iron uptake in human RCC tumorigenesis and progression remains unknown. We conducted a thorough, large-scale investigation of the expression and prognostic significance of the primary iron uptake protein, transferrin receptor 1 (TfR1/CD71/TFRC), in RCC patients. TfR1 immunohistochemistry was performed in over 1500 cores from 574 renal cell tumor patient tissues (primary tumors, matched benign kidneys, metastases) and non-neoplastic tissues from 36 different body sites.
View Article and Find Full Text PDF