Publications by authors named "Nithya Raghavan"

Biomphalaria snails are instrumental in transmission of the human blood fluke Schistosoma mansoni. With the World Health Organization's goal to eliminate schistosomiasis as a global health problem by 2025, there is now renewed emphasis on snail control. Here, we characterize the genome of Biomphalaria glabrata, a lophotrochozoan protostome, and provide timely and important information on snail biology.

View Article and Find Full Text PDF

Biomphalaria glabrata is a major intermediate host for the parasitic trematode Schistosoma mansoni, a causative agent of human schistosomiasis. To decipher the molecular basis of this host-parasite interaction, the Bge embryonic cell line provides a unique in vitro model system to assess whether interactions between the snail and parasite affect the cell and genome biology in either organism. The organization of the B.

View Article and Find Full Text PDF

The application of fluorescence in situ hybridization (FISH) for the mapping of single copy genes onto homologous chromosome has been integral to vast number genome sequencing projects, such as that of mouse and human. The chromosomes of these organisms are well-studied and are the staple resource of most of the early studies conducted in cytogenetics. However, there are now protocols for analyzing FISH probes in a number of different organisms on both metaphase and interphase chromosomes.

View Article and Find Full Text PDF

Schistosomes develop successfully in susceptible snails but are encapsulated and killed in resistant ones. Mechanism(s) shaping these outcomes involves the parasites ability to evade the snail's defenses. RNA analysis from resistant (BS-90), non-susceptible (LAC2) and susceptible (NMRI) juvenile Biomphalaria glabrata to Schistosoma mansoni revealed that stress-related genes, heat shock protein 70 (Hsp 70) and reverse transcriptase (RT), were dramatically co-induced early in susceptible snails, but not in resistant/non-susceptible ones.

View Article and Find Full Text PDF

To identify gene(s) that may be associated with resistance/susceptibility in the intermediate snail host Biomphalaria glabrata to Schistosoma mansoni infection, a snail albumen gland cDNA library was differentially screened and a partial cDNA encoding an antioxidant enzyme thioredoxin peroxidase (Tpx), or peroxiredoxin (Prx), was identified. The 753bp full-length, single-copy, constitutively expressed gene now referred to as BgPrx4 was later isolated. BgPrx4 is a 2-Cys peroxiredoxin containing the conserved peroxidatic cysteine (C(P)) in the N-terminus and the resolving cysteine (C(R)) in the C-terminus.

View Article and Find Full Text PDF

The fresh water snail Biomphalaria glabrata (2n=36) belongs to the taxonomic class Gastropoda (family Planorbidae) and is integral to the spread of the human parasitic disease schistosomiasis. The importance of this mollusc is such that it has been selected as a model molluscan organism for whole genome sequencing. In order to understand the structure and organisation of the B.

View Article and Find Full Text PDF

A bench scientist studying schistosomiasis must make a large commitment to maintain the parasite's life cycle, which necessarily involves a mammalian (definitive) host and the appropriate species of snail (intermediate host). This is often a difficult and expensive commitment to make, especially in the face of ever-tightening funds for tropical disease research. In addition to funding concerns, investigators usually face additional problems in the allocation of sufficient lab space to this effort (especially for snail rearing) and the limited availability of personnel experienced with life cycle upkeep.

View Article and Find Full Text PDF

Biomphalaria glabrata snails are known to display a wide range of susceptibility phenotypes to Schistosoma mansoni infection depending on the genetics of both the snail and the invading parasite. Evidence exists for a role of hydrolytic enzymes in the defense of molluscs against invading parasites. To elucidate the role of these enzymes in the outcome of infection in the snail, proteolysis was examined in parasite-resistant and -susceptible snails.

View Article and Find Full Text PDF

The freshwater snail Biomphalaria glabrata is closely associated with the transmission of human schistosomiasis. An ecologically sound method has been proposed to control schistosomiasis using genetically modified snails to displace endemic, susceptible ones. To assess the viability of this form of biological control, studies towards understanding the molecular makeup of the snail relative to the presence of endogenous mobile genetic elements are being undertaken since they can be exploited for genetic transformation studies.

View Article and Find Full Text PDF

In 2001, ideas for a snail genome project were discussed at the American Society of Parasitologists meeting (New Mexico) and a snail genome consortium was subsequently established (the first consortium meeting was held in 2005). A proposal for sequencing the snail genome was submitted to the National Human Genome Research Institute, and Biomphalaria glabrata was prioritized as a non-mammalian sequencing target in 2004. The sequencing of the genome of this medically important snail is now underway.

View Article and Find Full Text PDF

The internal defense mechanism of the snail Biomphalaria glabrata during a schistosome infection is activated and mediated via the immune effector cells known as hemocytes. Since resistance and susceptibility to schistosome infection is known to be genetically determined, our interest was to use the EST approach as a gene discovery tool to examine transcription profiles in hemocytes of resistant snails pre- and post-exposure to Schistosoma mansoni. Comparative analysis of the transcripts suggested that parasite exposure caused an active metabolic response in the hemocytes.

View Article and Find Full Text PDF