Background: With Surgomics, we aim for personalized prediction of the patient's surgical outcome using machine-learning (ML) on multimodal intraoperative data to extract surgomic features as surgical process characteristics. As high-quality annotations by medical experts are crucial, but still a bottleneck, we prospectively investigate active learning (AL) to reduce annotation effort and present automatic recognition of surgomic features.
Methods: To establish a process for development of surgomic features, ten video-based features related to bleeding, as highly relevant intraoperative complication, were chosen.
Clinically relevant postoperative pancreatic fistula (CR-POPF) can significantly affect the treatment course and outcome in pancreatic cancer patients. Preoperative prediction of CR-POPF can aid the surgical decision-making process and lead to better perioperative management of patients. In this retrospective study of 108 pancreatic head resection patients, we present risk models for the prediction of CR-POPF that use combinations of preoperative computed tomography (CT)-based radiomic features, mesh-based volumes of annotated intra- and peripancreatic structures and preoperative clinical data.
View Article and Find Full Text PDF