Transforming growth factor beta (TGF-β) is ubiquitously found in bone and plays a key role in bone turnover. Mice expressing constitutively active TGF-β receptor type I ( mice) are osteopenic. Here, we identified the candidate genes involved in bone turnover in mice using RNA sequencing analysis.
View Article and Find Full Text PDFCancer Immunol Immunother
April 2024
CAR-T-cell therapy has shown promise in treating hematological malignancies but faces challenges in treating solid tumors due to impaired T-cell function in the tumor microenvironment. To provide optimal T-cell activation, we developed a B7 homolog 3 protein (B7H3)-targeting CAR construct consisting of three activation signals: CD3ζ (signal 1), 41BB (signal 2), and the interleukin 7 receptor alpha (IL7Rα) cytoplasmic domain (signal 3). We generated B7H3 CAR-T cells with different lengths of the IL7Rα cytoplasmic domain, including the full length (IL7R-L), intermediate length (IL7R-M), and short length (IL7R-S) domains, and evaluated their functionality in vitro and in vivo.
View Article and Find Full Text PDFHER-2 overexpression is a major mechanism involved in endocrine-resistant breast cancer, which has very limited treatment options. Zoledronic acid (ZA) is a drug in the bisphosphonate group used to treat osteoporosis. ZA was reported to exhibit activity in various cancers, with higher efficacy associated with estrogen-deprivation states.
View Article and Find Full Text PDFChronic inflammation contributes to the development of skeletal disorders in patients with systemic lupus erythematosus (SLE). Activation of the host immune response stimulates osteoclast activity, which in turn leads to bone loss. Regenerating bone in the inflammatory microenvironments of SLE patients with critical bone defects remains a great challenge.
View Article and Find Full Text PDFTransforming growth factor beta (TGF-β) is a key factor mediating the intercellular crosstalk between the hematopoietic stem cells and their microenvironment. Here, we investigated the skeletal phenotype of transgenic mice expressing constitutively active TGF-β receptor type I under the control of Mx1-Cre ( mice). μCT analysis showed decreased cortical thickness, and cancellous bone volume in both femurs and mandibles.
View Article and Find Full Text PDFAlthough patients with either β-thalassemia or chronic kidney disease (CKD) clinically correlate with severe osteoporosis, the mechanism by which CKD exposed to high phosphate affects bone turnover has not been characterized in β-thalassemia. We aimed to determine the effects of renal insufficiency on high phosphate intake induced changes in bone metabolism after 5/6th nephrectomy in hemizygous β-globin knockout (BKO) mice. Male BKO mice manifested severe anemia and osteopenia.
View Article and Find Full Text PDFPatients with systemic lupus erythematosus (SLE) have increased inflammatory cytokines, leading to periodontitis and alveolar bone loss. However, the mechanisms driving this phenomenon are still unknown. Here, we have identified novel therapeutic targets for and mediators of lupus-mediated bone loss using RNA-sequencing (RNA-seq) in a FcγRIIB mouse model of lupus associated osteopenia.
View Article and Find Full Text PDFPatients with systemic lupus erythematosus are at increased risk for alveolar bone loss due to periodontitis possibly as a result of a pathogenic immune response to oral bacteria and inflammation. The aim of the present study was to investigate whether an anti-TNF-α antagonist could prevent mandibular bone loss in the FcγRIIb-/- mouse model of lupus. Mice lacking FcγRIIb had decreased cancellous and cortical bone volume at 6 months of age.
View Article and Find Full Text PDFThe important mechanism of endocrine resistance is the crosstalk between estrogen receptor (ER) and HER2 signaling pathways. Aside from ER downregulation, there was an increase in HER2 expression and increased activation of the downstream AKT/ERK pathways in endocrine-resistant cells (MCF-7/LCC2 and MCF-7/LCC9) which is similar to HER2-overexpressed (SKBR3) cells. However, nuclear receptor coactivator 3 (NCOA3), the important ER-coactivator, that upregulated in endocrine-resistant cells did not express in HER2-overexpressed (SKBR3) cells.
View Article and Find Full Text PDFBackground: PLB is a natural naphthoquinone compound isolated from the roots of Plumbago indica plant. Our previous study reported the inhibitory effect of Plumbagin (PLB) on human endocrine resistant breast cancer cell growth and cell invasion.
Hypothesis/purpose: Since PLB is a naphthoquinone compound, it can be reduced by the cytosolic NADPH: quinone oxidoreductase 1 (NQO1) enzyme.
Fifty percent of advanced stage ER-positive breast cancer patients develop endocrine resistance. Aberrant activation of Wnt/β-catenin is associated with stem-like phenotypes and epithelial-mesenchymal transition (EMT) process which confers resistance to endocrine therapy. Cancer stem-like cells (CSLCs) can be a vital source of proangiogenic factors including fibroblast growth factor 2 (FGF2) which drives angiogenesis and leads to tumor growth and metastasis.
View Article and Find Full Text PDFSalinomycin is a monocarboxylic polyether ionophore isolated from Streptomyces albus. It has been widely used as an antibiotic in veterinary medicine in poultry. A recent study demonstrated that salinomycin selectively inhibits human breast cancer stem cells; one possible mechanism of tamoxifen resistance.
View Article and Find Full Text PDFTamoxifen is widely used as the first line drug for estrogen receptor-positive subtype which is expressed in 70% of overall breast cancer patients. However, approximately 50% of these patients develop acquired resistance after 5 years of treatment, which is characterized by tumor recurrence and metastasis. The epithelial mesenchymal transition (EMT) is an important process in breast cancer invasion.
View Article and Find Full Text PDF