Publications by authors named "Nitesh Mani Tripathi"

Among popular radio metal chelators, DOTA and NOTA have been remarkably considered in radionuclide therapy and imaging studies due to several advantages in pharmacology. Here, we developed a practical and general method for assembling DOTA and NOTA in the solid phase peptide (pseudo-dilute conditions) using a wide range of solvents with easily accessible and economical feedstocks, which mitigated unprecedented challenges associated with previously reported methods. This upgraded approach enabled an efficient installation of these two chelators on various bioactive peptide sequences.

View Article and Find Full Text PDF

Peptide drugs often accompany epimeric impurities (isomers). Therefore, efficient chemical synthesis of epimers is critical to identify them correctly and investigate their biological activities. Here, we report the rapid synthesis and structure-activity relationship (SAR) studies of eight possible epimers of a somatostatin synthetic analog (SSA), lanreotide (LAN).

View Article and Find Full Text PDF

Chemical modifications of native peptides have significantly advanced modern drug discovery in recent decades. On this front, the installation of multitasking molecular grafts onto macrocyclic peptides offers numerous opportunities in biomedical applications. Here, we showcase a new class of borono-cyclic peptides featuring an azaborolo thiazolidine (ABT) graft, which can be readily assembled utilizing a bis-electrophilic boronic acid lynchpin while harnessing the inherent reactivity difference (>10 M s) between the N-terminal cysteine and backbone cysteine for rapid and highly regioselective macrocyclization (∼1 h) under physiological conditions.

View Article and Find Full Text PDF

Boronic acid-containing molecules are substantially popularized in chemical biology and medicinal chemistry due to the broad spectrum of covalent conjugations as well as interaction modules offered by the versatile boron atom. Apparently, the WGA peptide (wheat germ agglutinin, 62-73), which shows a considerably low binding affinity to sialic acid, turned into a selective and >5 folds potent binder with the aid of a suitable boronic acid probe installed chemoselectively. In silico studies prompted us to install BA probes on the cysteine residue, supposedly located in close proximity to the bound sialic acid.

View Article and Find Full Text PDF

High-throughput virtual screening (HTVS) is a leading biopharmaceutical technology that employs computational algorithms to uncover biologically active compounds from large-scale collections of chemical compound libraries. In addition, this method often leverages the precedence of screening focused libraries for assessing their binding affinities and improving physicochemical properties. Usually, developing a drug sometimes takes ages, and lessons are learnt from FDA-approved drugs.

View Article and Find Full Text PDF

Boron was misconstrued as a toxic element for animals, which retarded the growth of boron-containing drug discovery in the last century. Nevertheless, modern applications of boronic acid derivatives are attractive in biomedical applications after the declaration that boron is a 'probable essential element' for humans by the WHO. Additionally, the approval of five boronic acid-containing drugs by the FDA has vastly impacted the use of boron in medicinal chemistry, chemical biology, drug delivery, biomaterial exploration, pharmacological improvements, and nutrition.

View Article and Find Full Text PDF

Site-selective chemical modification of protein side chain has probed enormous opportunities in the fundamental understanding of cellular biology and therapeutic applications. Primarily, in the field of biopharmaceuticals, the formulation of bioconjugates has been found to have more potential than an individual constituent. In this regard, Lysine and Cysteine are the most widely used endogenous amino acid for these purposes.

View Article and Find Full Text PDF