Publications by authors named "Nitesh Katta"

Management of intracoronary calcium (ICC) continues to be a challenge for interventional cardiologists. There have been significant advances in calcium treatment devices. However, there still exists a knowledge gap regarding which devices to choose for the treatment of ICC.

View Article and Find Full Text PDF

Background: Electrical intravascular lithotripsy (E-IVL) uses shock waves to fracture calcified plaque.

Aims: We aimed to demonstrate the ability of laser IVL (L-IVL) to fracture calcified plaques in ex vivo human coronary arteries and to identify and evaluate the mechanisms for increased vessel compliance.

Methods: Shock waves were generated by a Ho:YAG (Holmium: yttrium-aluminium-garnet) laser (2 J, 5 Hz) and recorded by a high-speed camera and pressure sensor.

View Article and Find Full Text PDF

A consistent set of measurement techniques must be applied to reliably and reproducibly evaluate the efficacy of treatments for cutaneous neurofibromas (cNFs) in people with neurofibromatosis type 1 (NF1). cNFs are neurocutaneous tumors that are the most common tumor in people with NF1 and represent an area of unmet clinical need. This review presents the available data regarding approaches in use or development to identify, measure, and track cNFs, including calipers, digital imaging, and high-frequency ultrasound sonography.

View Article and Find Full Text PDF

Significance: Traditional pathology workflow suffers from limitations including biopsy invasiveness, small fraction of large tissue samples being analyzed, and complex and time-consuming processing.

Aim: We address limitations of conventional pathology workflow through development of a laser microbiopsy device for minimally invasive harvest of sub-microliter tissue volumes. Laser microbiopsy combined with rapid diagnostic methods, such as virtual hematoxylin and eosin (H&E) imaging has potential to provide rapid minimally invasive tissue diagnosis.

View Article and Find Full Text PDF

Background And Objective: Erbium:yttrium-aluminum-garnet (Er:YAG) laser ablation can effectively resect water-bearing tissues. Application of Er:YAG resection in neurosurgery is complicated by unpredictable bleeding in surgical field. Recently, an integrated theranostic system combining a dual-wavelength laser surgery system using a thulium (Tm) fiber-laser for coagulation and Er:YAG for resection, combined with optical coherence tomography (OCT) guidance was demonstrated for the in vivo resection of tumor tissue.

View Article and Find Full Text PDF

Photocoagulation of blood vessels offers unambiguous advantages to current radiofrequency approaches considering the high specificity of blood absorption at available laser wavelengths (e.g., 532 nm and 1.

View Article and Find Full Text PDF

Minimally invasive neurological surgeries are increasingly being sought after for treatment in neurological pathologies and oncology. A critical limitation in these minimally invasive procedures is lack of specialized tools that allow for space-time controlled delivery of sufficient energy for coagulation and cutting of tissue. Advent of fiber-lasers provide high average power with improved beam quality (lower M), biocompatible silica fiber delivery, reduced cost of manufacturing, and radiant output stability over long operating periods.

View Article and Find Full Text PDF

This study aimed at answering three research questions: (1) Under the experimental conditions studied, what is the dominant mechanism of Holmium:YAG lithotripsy with or without pulse modulation? (2) Under what circumstances can laser pulse modulation increase crater volume of stone ablation per joule of emitted radiant energy? (3) Are BegoStone phantoms a suitable model for laser lithotripsy studies? The research questions were addressed by ablation experiments with BegoStone phantoms and native stones. Experiments were performed under three stone conditions: dry stones in air, hydrated stones in air, and hydrated stones in water. Single pulses with and without pulse modulation were applied.

View Article and Find Full Text PDF

Background: The COVID-19 pandemic has caused a global mechanical ventilator shortage for treatment of severe acute respiratory failure. Development of novel breathing devices has been proposed as a low cost, rapid solution when full-featured ventilators are unavailable. Here we report the design, bench testing and preclinical results for an 'Automated Bag Breathing Unit' (ABBU).

View Article and Find Full Text PDF

Background: Intraoperative tissue analysis and identification are critical to guide surgical procedures and improve patient outcomes. Here, we describe the clinical translation and evaluation of the MasSpec Pen technology for molecular analysis of in vivo and freshly excised tissues in the operating room (OR).

Methods: An Orbitrap mass spectrometer equipped with a MasSpec Pen interface was installed in an OR.

View Article and Find Full Text PDF

Background And Objectives: Despite rapid advances and discoveries in medical imaging, monitoring therapeutic efficacy for malignant gliomas and monitoring tumor vasculature remains problematic. The purpose of this study is to utilize optical coherence angiography for vasculature characterization inside and surrounding brain tumors in a murine xenograft brain tumor model. Features included in our analysis include fractional blood volume, vessel tortuosity, diameter, orientation, and directionality.

View Article and Find Full Text PDF

Transparent "Window to the Brain" (WttB) cranial implants made from a biocompatible ceramic, nanocrystalline Yttria-Stabilized Zirconia (nc-YSZ), were recently reported. These reports demonstrated chronic brain imaging across the implants in mice using optical coherence tomography (OCT) and laser speckle imaging. However, optical properties of these transparent cranial implants are neither completely characterized nor completely understood.

View Article and Find Full Text PDF

Recent advances in immunotherapy have highlighted a need for therapeutics that initiate immunogenic cell death in tumors to stimulate the body's immune response to cancer. This study examines whether laser-generated bubbles surrounding nanoparticles ("nanobubbles") induce an immunogenic response for cancer treatment. A single nanosecond laser pulse at 1064 nm generates micron-sized bubbles surrounding gold nanorods in the cytoplasm of breast cancer cells.

View Article and Find Full Text PDF

Higher precision surgical devices are needed for tumor resections near critical brain structures. The goal of this study is to demonstrate feasibility of a system capable of precise and bloodless tumor ablation. An image-guided laser surgical system is presented for excision of brain tumors in a murine xenograft model.

View Article and Find Full Text PDF

Conventional methods for histopathologic tissue diagnosis are labor- and time-intensive and can delay decision-making during diagnostic and therapeutic procedures. We report the development of an automated and biocompatible handheld mass spectrometry device for rapid and nondestructive diagnosis of human cancer tissues. The device, named MasSpec Pen, enables controlled and automated delivery of a discrete water droplet to a tissue surface for efficient extraction of biomolecules.

View Article and Find Full Text PDF

Background And Objective: Surgical oncology can benefit from specialized tools that enhance imaging and enable precise cutting and removal of tissue without damage to adjacent structures. The combination of high-resolution, fast optical coherence tomography (OCT) co-aligned with a nanosecond pulsed thulium (Tm) laser offers advantages over conventional surgical laser systems. Tm lasers provide superior beam quality, high volumetric tissue removal rates with minimal residual thermal footprint in tissue, enabling a reduction in unwanted damage to delicate adjacent sub-surface structures such as nerves or micro-vessels.

View Article and Find Full Text PDF