Objective: IL-17A and TNF act in synergy to induce proinflammatory mediators in synovial fibroblasts thus contributing to diseases associated with chronic arthritis. Many of these factors are regulated by transcription factor E74-like factor-3 (ELF3). Therefore, we sought to investigate ELF3 as a downstream target of IL-17A and TNF signalling and to characterize its role in the molecular mechanism of synergy between IL-17A and TNF.
View Article and Find Full Text PDFBackground: Failure of total ankle replacement (TAR) can be characterized by early peri-implant osteolysis even in the presence of very modest numbers of wear particles. The hypothesis of the study was that this reaction is in part mediated by autoinflammatory responses mediated via damage-associated molecular patterns (DAMPs, danger signals) and pattern-recognizing danger signal receptors (PRRs).
Methods: Peri-implant tissue and control samples from 10 patients with AES implants were immunostained for hypoxia inducible factor-1α (HIF-1α), activated caspase-3, high-mobility group box 1 (HMGB1), receptor for advanced glycation end product (RAGE), and toll-like receptors TLR2 and TLR4.