Head and neck cancers are highly prevalent in south-east Asia, primarily due to betel nut chewing. Arecoline, the primary alkaloid is highly carcinogenic; however its role in promoting tumorigenesis by disrupting junctional complexes and increasing risk of metastasis is not well delineated. Subsequently, the effects of low and high concentrations of arecoline on the stability of tight junctions and EMT induction were studied.
View Article and Find Full Text PDFThis study investigated deregulation of lncRNAs and their associations with clinical parameters in rheumatoid arthritis (RA). LncRNAs were quantified from peripheral blood mono-nuclear cells (PBMCs) and plasma of 82 RA patients with 15 matched controls and from knee fluid of 24 RA patients with ten osteoarthritis controls. Multivariate analyses were performed among lncRNAs and clinical parameters of RA.
View Article and Find Full Text PDFMitofusin-2 (MFN2) is primarily involved in mitochondrial fusion and participates in diverse biological processes. Several reports show that MFN2 is a target of different miRNAs; however, the transcriptional regulation of MFN2 has not been extensively studied. To gain insight into the transcriptional regulation of MFN2, we expressed E2F transcription factor 1 (E2F1) exogenously and observed that it increased the endogenous expression of MFN2 by binding to its putative promoter region.
View Article and Find Full Text PDFBiochem Biophys Rep
September 2016
Heat shock response is an adaptive mechanism of cells characterized by rapid synthesis of a class of proteins popularly known as heat shock proteins (HSPs) by heat-induced activation of Heat Shock Factor 1 (HSF1). In course of our earlier study to show that HSF1 regulates transcription of HYPK (Huntingtin Yeast two-hybrid protein K), a chaperone-like protein, we observed presence of few other genes within 10 kb of promoter. In an attempt to understand whether adjacent genes of are co-regulated, we identified that (small EDRK-rich factor 2), an upstream neighboring gene of is also regulated by heat stress and HSF1.
View Article and Find Full Text PDFHuntingtin interacting protein HYPK (Huntingtin Yeast Partner K) is an intrinsically unstructured protein having chaperone-like activity and can suppress mutant huntingtin aggregates and toxicity in cell model of Huntington's Disease (HD). Heat shock response is an adaptive mechanism of cells characterized by upregulation of heat shock proteins by heat-induced activation of heat shock factor 1 (HSF1). The trans-activation ability of HSF1 is arrested upon restoration of proteostasis.
View Article and Find Full Text PDFBackground: Heat shock factor 1 (HSF1) is the master regulator of chaperone network in mammalian cells and can protect cells from adverse effects of misfolded proteins by rapidly inducing expression of multiple heat shock proteins (HSPs) and other cytoprotective proteins. HSF1 also regulates transcription of microRNAs (miRNAs) in heat shock-dependent manner and these miRNAs are likely to regulate diverse cellular processes by acting as downstream effectors of HSF1.
Methods: The study was aimed at understanding the effect of HSF1-regulated miRNAs on huntingtin expression and Huntington's Disease (HD) pathogenesis, if any.
Biochem Biophys Res Commun
October 2015
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by the increase in CAG repeats beyond 36 at the exon1 of the gene Huntingtin (HTT). Among the various dysfunctions of biological processes in HD, transcription deregulation due to abnormalities in actions of transcription factors has been considered to be one of the important pathological conditions. In addition, deregulation of microRNA (miRNA) expression has been described in HD.
View Article and Find Full Text PDFSeveral indirect evidences are available to indicate that abnormalities in cell cycle may contribute to pathogenesis of Huntington's disease (HD). Here, we show that the cell cycle progression in STsdh(Q111)/Hdh(Q111)cells, a cell model of HD, is delayed in S and G2-M phases compared to control STHdhQ7/HdhQ7cells. Expression of 17 genes, like PCNA and CHEK1, was increased in STHdh(Q111)/Hdh(Q111)cells.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2014
Heat shock response pathway is a conserved defense mechanism of mammalian cells to maintain protein homeostasis against proteotoxic environmental conditions. This is characterized by robust synthesis of molecular chaperones mostly by stress-induced activation of heat shock factor 1 (HSF1). MicroRNAs (miRNAs) are a family of small non-coding RNAs that negatively regulate expression of protein-coding genes.
View Article and Find Full Text PDFMicroRNA (miRNA) regulates expression of protein coding genes and has been implicated in diverse cellular processes including neuronal differentiation, cell growth and death. To identify the role of miRNA in neuronal differentiation, SH-SY5Y and IMR-32 cells were treated with dopamine cocktail and retinoic acid to induce differentiation. Detection of miRNAs in differentiated cells revealed that expression of many miRNAs was altered significantly.
View Article and Find Full Text PDFHYPK (Huntingtin Yeast Partner K) was originally identified by yeast two-hybrid assay as an interactor of Huntingtin, the protein mutated in Huntington's disease. HYPK was characterized earlier as an intrinsically unstructured protein having chaperone-like activity in vitro and in vivo. HYPK has the ability of reducing rate of aggregate formation and subsequent toxicity caused by mutant Huntingtin.
View Article and Find Full Text PDFGrowth factor receptor protein binding protein 2 (Grb2) is known to be associated with intracellular growth and proliferation related signaling cascades. Huntingtin (Htt), a ubiquitously expressed protein, when mutated, forms toxic intracellular aggregates - the hallmark of Huntington's disease (HD). We observed an elevated expression of Grb2 in neuronal cells in animal and cell models of HD.
View Article and Find Full Text PDFBiochem Biophys Res Commun
July 2013
Mutation in huntingtin (HTT) gene causes Huntington's disease (HD). Expression of many micro RNAs is known to alter in cell, animal models and brains of HD patients, but their cellular effects are not known. Here, we show that expression of microRNA-124 (miR-124) is down regulated in HD striatal mutant STHdh(Q111)/Hdh(Q111) cells, a cell model of HD compared to STHdh(Q7)/Hdh(Q7) cells.
View Article and Find Full Text PDF