Aluminium (Al) is one of the most popular materials for industrial and domestic use. Nevertheless, research has proven that this metal can be toxic to most organisms. This light metal has no known biological function and to date very few aluminium-specific biological pathways have been identified.
View Article and Find Full Text PDFBacteria biofilm formation and its complications are of special concern in isolated structures, such as offshore stations, manned submarines and space habitats, as maintenance and technical support are poorly accessible due to costs and/or logistical challenges. In addition, considering that future exploration missions are planned to adventure farther and longer in space, unlocking biofilm formation mechanisms and developing new antifouling solutions are key goals in order to ensure spacecraft's efficiency, crew's safety and mission success. In this work, we explored the interactions between , a prevalently identified contaminant onboard the International Space Station, and aerospace grade materials such as the titanium alloy TiAl6V4, the stainless steel AISI 316 (SS316) and Polytetrafluoroethylene (PTFE) or Teflon.
View Article and Find Full Text PDFPoisoning and accidental oral intoxication are major health problems worldwide. Considering the insufficient efficacy of the currently available detoxification treatments, a pioneering oral detoxifying adsorbent agent based on a single biocompatible metal-organic framework (MOF) is here proposed for the efficient decontamination of drugs commonly implicated in accidental or voluntary poisoning. Furthermore, the in vivo toxicity and biodistribution of a MOF via oral administration have been investigated for the first time.
View Article and Find Full Text PDF