The head-twitch response (HTR) in mice is considered a behavioral assay for activation of 5-HT 2A receptors in rodents. It can be evoked by direct-acting 5-HT 2A receptor agonists such as (±)-2,5-dimethoxy-4-iodoamphetamine, 5-hydroxytryptamine precursors [e.g.
View Article and Find Full Text PDFIn contrast to cats and dogs, here we report that the α-adrenergic receptor antagonist yohimbine is emetic and corresponding agonists clonidine and dexmedetomidine behave as antiemetics in the least shrew model of vomiting. Yohimbine (0, 0.5, 0.
View Article and Find Full Text PDFThe least shrew is among the subset of animals that are capable of vomiting and therefore serves as a valuable research model for investigating the biochemistry, molecular biology, pharmacology, and genomics of emesis. Both nausea and vomiting are associated with a variety of illnesses (bacterial/viral infections, bulimia, exposure to toxins, gall bladder disease), conditions (pregnancy, motion sickness, emotional stress, overeating) and reactions to drugs (chemotherapeutics, opiates). The severe discomfort and intense fear associated with the stressful symptoms of nausea and emesis are the major reason for patient non-compliance when being treated with cancer chemotherapeutics.
View Article and Find Full Text PDFBackground: The head-twitch response (HTR) in mice is considered a behavioral model for hallucinogens and serotonin 5-HT receptor function, as well as Tourette syndrome in humans. It is mediated by 5-HT receptor agonists such as ( ±)- 2,5-dimethoxy-4-iodoamphetamine (DOI) in the prefrontal cortex (PFC). The 5-HT antagonist EMD 281014, can prevent both DOI-induced HTR during ageing and c-fos expression in different regions of PFC.
View Article and Find Full Text PDFTemsirolimus is a prodrug form of sirolimus (rapamycin). With its analogs (everolimus, ridaforolimus, and rapamycin), it forms a group of anticancer agents that block the activity of one of the two mammalian targets of rapamycin (mTOR) complexes, mTORC1. We investigated the emetic potential of varying doses (0, 0.
View Article and Find Full Text PDFBackground: Methamphetamine (MA) is a non-selective monoamine releaser and thus releases serotonin (5-HT), norepinephrine (NE) and dopamine (DA) from corresponding nerve terminals into synapses. DOI ((±)-2, 5-dimethoxy-4-iodoamphetamine) is a direct-acting serotonergic 5-HT receptor agonist and induces the head-twitch response (HTR) via stimulation of 5-HT receptor in mice. While more selective serotonin releasers such as d-fenfluramine evoke the HTR, monoamine reuptake blockers (e.
View Article and Find Full Text PDFMitochondrial adaptations are fundamental to differentiated function and energetic homeostasis in mammalian cells. But the mechanisms that underlie these relationships remain poorly understood. Here, we investigated organ-specific mitochondrial morphology, connectivity and protein composition in a model of extreme mammalian metabolism, the least shrew (Cryptotis parva).
View Article and Find Full Text PDFGq and Gβγ protein-dependent phospholipase C (PLC) activation is extensively involved in G protein-coupled receptor (GPCR)-mediated signaling pathways which are implicated in a wide range of physiological and pathological events. Stimulation of several GPCRs, such as substance P neurokinin 1-, dopamine D-, histamine H- and mu-opioid receptors, can lead to vomiting. The aim of this study was to investigate the role of PLC in vomiting through assessment of the emetic potential of a PLC activator (m-3M3FBS), and the antiemetic efficacy of a PLC inhibitor (U73122), in the least shrew model of vomiting.
View Article and Find Full Text PDFNausea and vomiting are common gastrointestinal complaints that can be triggered by diverse emetic stimuli through central and/or peripheral nervous systems. Both nausea and vomiting are considered as defense mechanisms when threatening toxins/drugs/bacteria/viruses/fungi enter the body either via the enteral (e.g.
View Article and Find Full Text PDFWith its five receptor subtypes (D), dopamine is implicated in a myriad of neurological illnesses. Dopamine D receptor-based agonist therapy evokes nausea and vomiting. The signaling mechanisms by which dopamine D receptors evoke vomiting remains unknown.
View Article and Find Full Text PDFAkt (protein kinase B) signaling is frequently activated in diverse cancers. Akt inhibitors such as perifosine and MK-2206 have been evaluated as potential cancer chemotherapeutics. Although both drugs are generally well tolerated, among their most common side-effects vomiting is a major concern.
View Article and Find Full Text PDFDopamine is a member of the catecholamine family and is associated with multiple physiological functions. Together with its five receptor subtypes, dopamine is closely linked to neurological disorders such as schizophrenia, Parkinson's disease, depression, attention deficit-hyperactivity, and restless leg syndrome. Unfortunately, several dopamine receptor-based agonists used to treat some of these diseases cause nausea and vomiting as impending side-effects.
View Article and Find Full Text PDFΔ-THC suppresses cisplatin-induced vomiting through activation of cannabinoid CB receptors. Cisplatin-evoked emesis is predominantly due to release of serotonin and substance P (SP) in the gut and the brainstem which subsequently stimulate their corresponding 5-HT-and neurokinin NK-receptors to induce vomiting. Δ-THC can inhibit vomiting caused either by the serotonin precursor 5-HTP, or the 5-HT receptor selective agonist, 2-methyserotonin.
View Article and Find Full Text PDFPublished studies have shown that the transient receptor potential vanilloid 1 (TRPV1) receptor agonist, resiniferatoxin (RTX), has pro and antiemetic effects. RTX can suppress vomiting evoked by a variety of nonselective emetogens such as copper sulfate and cisplatin in several vomit-competent species. In the least shrew, we have already demonstrated that combinations of ultra-low doses of RTX and low doses of the cannabinoid CB1/2 receptor agonist delta-9-tetrahydrocannabinol (Δ-THC) produce additive antiemetic effects against cisplatin-evoked vomiting.
View Article and Find Full Text PDFCa plays a major role in maintaining cellular homeostasis and regulates processes including apoptotic cell death and side-effects of cancer chemotherapy including vomiting. Currently we explored the emetic mechanisms of FPL64176, an L-type Ca channel (LTCC) agonist with maximal emetogenic effect at its 10 mg/kg dose. FPL64176 evoked c-Fos immunoreactivity in shrew brainstem sections containing the vomit-associated nuclei, nucleus tractus solitarius (NTS) and dorsal motor nucleus of the vagus.
View Article and Find Full Text PDFThe introduction of second generation serotonin 5-HT receptor (5-HT) antagonist palonosetron combined with long-acting substance P neurokinin NK receptor (NK) antagonists (e.g. netupitant) has substantially improved antiemetic therapy against early- and delayed-phases of emesis caused by highly emetogenic chemotherapeutics such as cisplatin.
View Article and Find Full Text PDFNausea and vomiting are often considered as stressful symptoms of many diseases and drugs. In fact they are the most feared and debilitating side-effects of many cancer chemotherapeutics and the main cause of patient noncompliance. Despite years of substantial research, the intracellular emetic signals are at best poorly understood or remain unknown.
View Article and Find Full Text PDFCisplatin-like chemotherapeutics cause vomiting via calcium (Ca)-dependent release of multiple neurotransmitters (dopamine, serotonin, substance P, etc.) from the gastrointestinal enterochromaffin cells and/or the brainstem. Intracellular Ca signaling is triggered by activation of diverse emetic receptors (including tachykininergic NK, serotonergic 5-HT, dopaminergic D, cholinergic M, or histaminergic H) whose activation in vomit-competent species can evoke emesis.
View Article and Find Full Text PDFCytoplasmic calcium (Ca(2+)) mobilization has been proposed to be an important factor in the induction of emesis. The selective sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibitor thapsigargin, is known to deplete intracellular Ca(2+) stores, which consequently evokes extracellular Ca(2+) entry through cell membrane-associated channels, accompanied by a prominent rise in cytosolic Ca(2+). A pro-drug form of thapsigargin is currently under clinical trial as a targeted cancer chemotherapeutic.
View Article and Find Full Text PDFActivation of serotonergic 5-HT3 receptors by its selective agonist 2-methyl serotonin (2-Me-5-HT) induces vomiting, which is sensitive to selective antagonists of both 5-HT3 receptors (palonosetron) and L-type calcium channels (LTCC) (amlodipine or nifedipine). Previously we demonstrated that 5-HT3 receptor activation also causes increases in a palonosetron-sensitive manner in: i) intracellular Ca(2+) concentration, ii) attachment of calmodulin (CaM) to 5-HT3 receptor, and iii) phosphorylation of Ca(2+)/calmodulin-dependent protein kinase IIα (CaMKIIα) and extracellular-signal-regulated kinase 1/2 (ERK1/2). Here, we investigate the role of the short-acting LTCC blocker nifedipine on 2-Me-5-HT-evoked intracellular Ca(2+) increase and on downstream intracellular emetic signaling, which have been shown to be coupled with 2-Me-5-HT׳s emetic effects in the least shrew.
View Article and Find Full Text PDFTo better understand the anti-emetic profile of the 5-HT3 (palonosetron)- and the tachykinin NK1 (netupitant) -receptor antagonists, either alone or in combination, we evaluated the effects of palonosetron and/or netupitant pretreatment on cisplatin-evoked vomiting and changes in the phosphorylation of brainstem kinases such as the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), protein kinase C alpha/beta (PKCα/β), and protein kinase A (PKA) in the least shrew. Our results demonstrate that cisplatin (10mg/kg, i.p.
View Article and Find Full Text PDFStimulation of 5-HT3 receptors (5-HT3Rs) by 2-methylserotonin (2-Me-5-HT), a selective 5-HT3 receptor agonist, can induce vomiting. However, downstream signaling pathways for the induced emesis remain unknown. The 5-HT3R channel has high permeability to extracellular calcium (Ca(2+)) and upon stimulation allows increased Ca(2+) influx.
View Article and Find Full Text PDFThe biochemical and histopathological changes in the lower esophageal sphincter (LES) in the pathogenesis of gastroesophageal reflux disease have gained interest. The least shrew is able to vomit in response to emetogens and provides a good model to study the histology of this phenomenon relative to the published reports in the commonly used but vomit-incompetent laboratory species. The LES is located at the junction of the esophagus and stomach.
View Article and Find Full Text PDFThe dihydropyridine l-type calcium (Ca(2+)) channel blockers nifedipine and amlodipine reduce extracellular Ca(2+) entry into cells. They are widely used for the treatment of hypertensive disorders. We have recently demonstrated that extracellular Ca(2+) entry via l-type Ca(2+) channels is involved in emesis and that nifedipine has broad-spectrum antiemetic activity.
View Article and Find Full Text PDFCisplatin-like chemotherapeutics cause vomiting via release of multiple neurotransmitters (dopamine, serotonin (5-HT), or substance P (SP)) from the gastrointestinal enterochromaffin cells and/or the brainstem via a calcium dependent process. Diverse channels in the plasma membrane allow extracellular Ca(2+) entry into cells for the transmitter release process. Agonists of 5-HT3 receptors increase calcium influx through both 5-HT3 receptors and L-type Ca(2+) channels.
View Article and Find Full Text PDF