ACS Appl Mater Interfaces
January 2025
Metal-organic frameworks (MOFs) combined with polymers as hybrid materials offer numerous advantages such as enhanced performances through synergistic effects at their interface. The primary challenge in developing polymer/MOF hybrid matrix films is ensuring optimal dispersion and strong adhesion of crystalline MOFs to the polymer without aggregation, weak interaction, or phase separation. In this study, hierarchically porous UiO-66_NH/chitosan (ZrCSx-) films were designed by crystallizing UiO-66_NH within a chitosan (CS) skeleton.
View Article and Find Full Text PDFA green synthesis of UiO-66-NH embedded in chitosan and deposited on textiles has been investigated for the degradation of chemical warfare agents. This method requires no heating or use of toxic solvents. The composite synthesized presents an interesting efficiency in detoxifying common simulants of chemical warfare agents, such as DMNP.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2023
This study investigates the use of chitosan hydrogel microspheres as a template for growing an extended network of MOF-type HKUST-1. Different drying methods (supercritical CO, freeze-drying, and vacuum drying) were used to generate three-dimensional polysaccharide nanofibrils embedding MOF nanoclusters. The resulting HKUST-1@Chitosan beads exhibit uniform and stable loadings of HKUST-1 and were used for the adsorption of CO, CH, Xe, and Kr.
View Article and Find Full Text PDFMicrometer-thicker, biologically responsive nanocomposite films were prepared starting from alginate-metal alkoxide colloidal solution followed by sol-gel chemistry and solvent removal through evaporation-induced assembly. The disclosed approach is straightforward and highly versatile, allowing the entrapment and growth of a set of glassy-like metal oxide within the network of alginate and their shaping as crake-free transparent and flexible films. Immersing these films in aqueous medium triggers alginate solubilization, and affords water-soluble metal oxides wrapped in a biocompatible carbohydrate framework.
View Article and Find Full Text PDFSynthetic materials commonly used in the packaging industry generate a considerable amount of waste each year. Chitosan is a promising feedstock for the production of functional biomaterials. From a biological point of view, chitosan is very attractive for food packaging.
View Article and Find Full Text PDFAside from their economical cost and resource depletion, petroleum-based plastics generate annually a substantial amount of waste with a negative and extremely alarming impact on the environment and public health. Consequently, rising interest was devoted to search for biobased materials to find sustainable alternatives. Herein, we report a new and straightforward method to incorporate endogenous nano-objects (exemplified herein by metal oxide clusters) within polysaccharide-based films.
View Article and Find Full Text PDF