Molecular imaging using positron emission tomography (PET) provides sensitive detection and mapping of molecular targets. While cancer-associated fibroblasts and integrins have been proposed as targets for imaging of pancreatic ductal adenocarcinoma (PDAC), herein, spatial transcriptomics and proteomics of human surgical samples are applied to select PDAC targets. We find that selected cancer cell surface markers are spatially correlated and provide specific cancer localization, whereas the spatial correlation between cancer markers and immune-related or fibroblast markers is low.
View Article and Find Full Text PDFSichuan Da Xue Xue Bao Yi Xue Ban
September 2024
Liver cancer is one of the leading causes of cancer-related deaths worldwide. However, all liver cancer treatment options currently available fail to achieve a complete cure. Recently, research on pyroptosis has attracted significant attention from researchers in the field of cancer therapy.
View Article and Find Full Text PDFInduction of pyroptosis can promote anti-PD-L1 therapeutic efficacy due to the release of pro-inflammatory cytokines, but current approaches can cause off target toxicity. Herein, a phthalocyanine-conjugated mesoporous silicate nanoparticle (PMSN) is designed for amplifying sonodynamic therapy (SDT) to augment oxidative stress and induce robust pyroptosis in tumors. The sub-10 nm diameter structure and c(RGDyC)-PEGylated modification enhance tumor targeting and renal clearance.
View Article and Find Full Text PDFMicrobubbles are currently approved for diagnostic ultrasound imaging and are under evaluation in therapeutic protocols. Here, we present a protocol for in vitro sonoporation validation using non-targeted microbubbles for gene delivery. We describe steps for computational simulation, experimental calibration, reagent preparation, ultrasound treatment, validation, and gene expression analysis.
View Article and Find Full Text PDFDespite recent advances in the use of adeno-associated viruses (AAVs) as potential vehicles for genetic intervention of central and peripheral nervous system-associated disorders, gene therapy for the treatment of neuropathology in adults has not been approved to date. The currently FDA-approved AAV-vector based gene therapies rely on naturally occurring serotypes, such as AAV2 or AAV9, which display limited or no transport across the blood-brain barrier (BBB) if systemically administered. Recently developed engineered AAV variants have shown broad brain transduction and reduced off-target liver toxicity in non-human primates (NHPs).
View Article and Find Full Text PDFManipulating gene expression in the host genome with high precision is crucial for controlling cellular function and behavior. Here, we present a precise, non-invasive, and tunable strategy for controlling the expression of multiple endogenous genes both in vitro and in vivo, utilizing ultrasound as the stimulus. By engineering a hyper-efficient dCas12a and effector under a heat shock promoter, we demonstrate a system that can be inducibly activated through thermal energy produced by ultrasound absorption.
View Article and Find Full Text PDFZhongguo Dang Dai Er Ke Za Zhi
December 2021
Objectives: To study the physical and neuropsychological development of children with Citrin deficiency (CD).
Methods: A total of 93 children, aged 1.9-59.
Immunotherapy is an important cancer treatment strategy; nevertheless, the lack of robust immune cell infiltration in the tumor microenvironment remains a factor in limiting patient response rates. gene delivery protocols can amplify immune responses and sensitize tumors to immunotherapies, yet non-viral transfection methods often sacrifice transduction efficiency for improved safety tolerance. To improve transduction efficiency, we optimized a strategy employing low ultrasound transmission frequency-induced bubble oscillation to introduce plasmids into tumor cells.
View Article and Find Full Text PDFDue to the ease of use and excellent safety profile, ultrasound is a promising technique for both diagnosis and site-specific therapy. Ultrasound-based techniques have been developed to enhance the pharmacokinetics and efficacy of therapeutic agents in cancer treatment. In particular, transfection with exogenous nucleic acids has the potential to stimulate an immune response in the tumor microenvironment.
View Article and Find Full Text PDFHigh intensity focused ultrasound (HIFU) rapidly and non-invasively destroys tumor tissue. Here, we sought to assess the immunomodulatory effects of MR-guided HIFU and its combination with the innate immune agonist CpG and checkpoint inhibitor anti-PD-1. Mice with multi-focal breast cancer underwent ablation with a parameter set designed to achieve mechanical disruption with minimal thermal dose or a protocol in which tumor temperature reached 65 °C.
View Article and Find Full Text PDFThe recent progress in the development of highly biocompatible nanoplatforms mostly encompasses the use of biological excipients such as red blood cells, cancer cell membranes, and also platelets. Such specialized vectors, if mimicked correctly, have intrinsic ability to navigate through the biological system and perform their intended action without eliciting any cascade of inflammatory processes. Naturally, platelets have been found to accumulate in the wound sites and also interact with circulating tumor cells (CTCs).
View Article and Find Full Text PDFThe limited clinical efficacy of monotherapies in the clinic has urged the development of novel combination platforms. Taking advantage of light-triggered photodynamic treatment combined together with the controlled release of nanomedicine, it has been possible to treat cancer without eliciting any adverse effects. However, the challenges imposed by limited drug loading capacity and complex synthesis process of organic nanoparticles (NPs) have seriously impeded advances in chemo-photodynamic combination therapy.
View Article and Find Full Text PDFBioconjug Chem
December 2018
Chemotherapy suffers from some limitations such as poor bioavailability, rapid clearance from blood, poor cellular uptake, low tumor accumulation, severe side effects on healthy tissues and most importantly multidrug resistance (MDR) in cancer cells. Nowadays, a series of smart drug delivery system (DDS) based on amphiphilic drug conjugates (ADCs) has been developed to solve these issues, including polymer-drug conjugate (PDC), phospholipid-mimicking prodrugs, peptide-drug conjugates (PepDCs), pure nanodrug (PND), amphiphilic drug-drug conjugate (ADDC), and Janus drug-drug conjugate (JDDC). These ADCs can self-assemble into nanoparticles (NPs) or microbubbles (MBs) for targeted drug delivery by minimizing the net amount of excipients, realizing great goals, such as stealth behavior and physical integrity, high drug loading content, no premature leakage, long blood circulation time, fixed drug combination, and controlled drug-release kinetics.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) is a malignant and refractory disease with high morbidity and mortality. The TNBC shows no response to hormonal therapy nor targeted therapy due to the lack of known targetable biomarkers. Furthermore, the TNBC also exhibits a high degree of heterogeneity that leads to cancer evolution, drug resistance, metastatic progression, and recurrence, arising from the tumor-initiating properties of cancer stem cells (CSCs).
View Article and Find Full Text PDFThe presence of blood-brain barrier (BBB) greatly limits the availability of drugs and their efficacy against glioma. Focused ultrasound (FUS) can induce transient and local BBB opening for enhanced drug delivery. Here, we developed polysorbate 80-modified paclitaxel-loaded PLGA nanoparticles (PS-80-PTX-NPs, PPNP) and examined the enhanced local delivery into the brain for glioma treatment by combining with FUS.
View Article and Find Full Text PDFMultidrug resistance remains one of the main obstacles to efficient chemotherapy of colorectal cancer. Herein, an efficient combination therapeutic strategy is proposed based on porphyrin/camptothecin-floxuridine triad microbubbles (PCF-MBs) with high drug loading contents, which own highly stable co-delivery drug combinations and no premature release. The triad PCF-MBs can act not only as a contrast agent for ultrasound (US)/fluorescence bimodal imaging but also a multimodal therapeutic agent for synergistic chemo-photodynamic combination therapy.
View Article and Find Full Text PDFTreatment for Parkinson's disease (PD) is challenged by the presence of the blood-brain barrier (BBB) that significantly limits the effective drug concentration in a patient's brain for therapeutic response throughout various stages of PD. Curcumin holds the potential for α-synuclein clearance to treat PD; however, its applications are still limited due to its low bioavailability and poor permeability through the BBB in a free form. Herein, this paper fabricated curcumin-loaded polysorbate 80-modified cerasome (CPC) nanoparticles (NPs) with a mean diameter of ~110 nm for enhancing the localized curcumin delivery into the targeted brain nuclei via effective BBB opening in combination with ultrasound-targeted microbubble destruction (UTMD).
View Article and Find Full Text PDFA dual-in-dual synergistic strategy was proposed based on the self-assembly of combinatorial nanocapsules (NCs) from Janus camptothecin-floxuridine (CF) conjugate and the near-infrared absorber of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR) by introducing PEGylated phospholipid of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycerol)-2000] to increase the blood circulation time of NCs. Due to the use of amphiphilic CF and DiR themselves to form liposome-like nanocapsules, the obtained CF-DiR NCs owned a significantly high loading content, a stable co-delivery drug combinations, a no premature release, and an excellent photothermal conversion efficiency. The in vivo fluorescence imaging indicated that CF-DiR NCs could achieve a high tumor accumulation after an intravenous injection.
View Article and Find Full Text PDFWe have demonstrated that a typical nanothermometer was incorporated in a bovine serum albumin stabilized gold nanostar-indocyanine green (denoted as GNS-ICG-BSA) nanoprobe to realize surface-enhanced Raman scattering (SERS) imaging-based real-time sensitive monitoring of intracellular temperature in photothermal therapy (PTT), which significantly improved the spatial resolution compared to infrared thermal imaging. Herein, an exogenous thermosensitive molecule, ICG, acting as a tri-functional agent, was selected as the Raman reporter instead of direct cellular biochemical changes. The triggering of the obtained probe was unaffected by the cellular microenvironment, so it can act as a monitor of PTT in various cell types.
View Article and Find Full Text PDF