Publications by authors named "Nishter Nishad Fathima"

Tuned assembly of collagen has tremendous applications in the field of biomedical and tissue engineering owing to its targeted biological functionalities. In this study, ionic liquids choline dihydrogen citrate (CDHC) and diethyl methyl ammonium methane sulfonate (AMS) have been used to regulate the self-assembly of collagen at its physiological pH by probing the assembled systems at certain concentration ratios of ionic liquids and the systems were studied using various characterization methods. Due to interaction with collagen, choline dihydrogen citrate causes delay in the collagen fibrillisation process showing no binding interactions with collagen.

View Article and Find Full Text PDF

Dermatan sulfate is one of the major glycosaminoglycan (GAG) present in the animal hides, which is a waste/byproduct from meat industry. Efficient utilization of these meat industry wastes is garnering attention because these wastes render a possibility for their conversion into useful products. With the increased concerns over health, various initiatives have been developed to permit more efficient utilization of these by-products and thereby directly impacting environmental sustainability.

View Article and Find Full Text PDF

Silk fibroin nanofibers find broader applications in skin tissue engineering as wound dressings. In this study, we have prepared biocompatible collagen-coated silk fibroin nanofibers with two small molecules: sinomenine hydrochloride (SH) and kaempferol hydrate (KH) with bioactive properties for wound healing applications. The prepared nanofibrous scaffolds were characterized different experimental techniques and the biocompatibility of the nanofibrous scaffolds was assessed using MTT assay and live/dead cell assay.

View Article and Find Full Text PDF

Developing value-added material from industrial waste is one of the sustainable ways of recycling solid waste produced from the leather industry. Noise which makes a considerable negative impact in the day to day life of people needs immediate attention where the sound absorbers play a vital role. Nanofibers can be used as sound absorbers due to their properties like porosity and high surface area.

View Article and Find Full Text PDF

Dyes from industrial wastewaters represent one of the most hazardous pollutants as they are not effectively biodegradable. The present work is focused to study the novel properties of keratin-polyamide blend nanofibrous filtration membranes for treating wastewaters containing dye. Keratin protein was extracted from goat hair, a tannery waste through sulphitolysis process.

View Article and Find Full Text PDF

Nanoparticles owing to their size have a substantial influence on the biological behavior of collagen, thereby opening new channels to unfold the propensity of nanoparticles in terms of collagen stabilization. The present study aims to synthesize and characterize cerium oxide nanoparticles and to investigate their crosslinking efficiency on collagen. Cerium oxide nanoparticles, known biocatalysts, form an effective oxidation system due to their variable oxidation state.

View Article and Find Full Text PDF

In protein-ionic liquids (ILs) interactions, anions play an important role. In this work, imidazolium-based ILs (IILs) with varying anions namely dicyanamide (DCA), hydrogen sulfate (HS), dimethyl phosphate (DP), acetate (A), sulfate (S) and dihydrogen phosphate (DHP) have been chosen with the aim of understanding the role of anions in bringing about the destabilization effect on collagen based on the kosmotropicity and chaotropicity of ions. Imidazolium-based ILs destabilized the triple helical structure of collagen, thereby proving as strong denaturants for collagen and this was confirmed by various spectroscopic techniques viz.

View Article and Find Full Text PDF

Type I collagen is a fibrous protein, which is highly biocompatible and biodegradable and exhibits low immunogenicity with its unique feature of undergoing a spontaneous self-assembly process. However, the excessive accumulation of collagen may lead to a condition known as fibrosis in vertebrates. Recently, saturated fatty acids have gained much attention as biomedical and therapeutic agents.

View Article and Find Full Text PDF

Protein-based polymeric micelles are proven as effective colloidal drug carriers due to a high drug loading efficiency, sustained release, biocompatibility, and ease of permeation into the cell. Gelatin-based polymeric micelles find applications in treating rare cancerous cells like triple negative breast cancer cells (TNBC), which do not overexpress receptors on its surface. In the present work, we have modified the hydrophilic nature of gelatin into amphiphilic by conjugating with oleylamine using genipin as a cross-linking agent.

View Article and Find Full Text PDF

Casein, a major protein content in the milk has been extensively used in drug delivery due to its unique structural features. Fabrication of nanofibers from casein along with nanoparticles for tissue engineering applications has been explored in this study. Nanofibers fabrication is achieved by co-electrospinning of casein with poly (ethylene oxide) in sodium dodecyl sulphate (SDS) aqueous solution.

View Article and Find Full Text PDF

Researchers are keen on formulating composites blending biomacromolecules with functional nanoparticles to achieve greater efficacy to expedite the wound healing process. In the present work, we have engineered a genipin cross-linked gelatin hydrogel composite containing optimized concentration of cerium oxide nanoparticles (G-ONp) for the purpose of wound healing. The concentration of cerium oxide nanoparticles in G-ONp has been optimized to be 250 μg/mL, which shows more than 80% cell viability in cytotoxicity study.

View Article and Find Full Text PDF

Despite being a favorable candidate in wound dressing, collagen based biomaterials possess inferior mechanical properties which limit their usage. Collagen based hybrid nanofibers with other polymers can enhance their mechanical strength as well as their biological properties. Herein, we report collagen-silk fibroin hybrid nanofibers incorporated with fenugreek, an antioxidant, as a bioactive wound dressing material.

View Article and Find Full Text PDF

The changes in the structure and dynamics of collagen treated with two different classes of ionic liquids, bis-choline sulfate (CS) and 1-butyl-3-methyl imidazolium dimethyl phosphate (IDP), have been studied at the molecular and fibrillar levels. At the molecular level, circular dichroic studies revealed an increase in molar ellipticity values for CS when compared with native collagen, indicating cross-linking, albeit pronounced conformational changes for IDP were witnessed indicating denaturation. The impedance was analyzed to correlate the conformational changes with the hydration dynamics of protein.

View Article and Find Full Text PDF

Free radicals are generated by various biochemical pathways in the living system, causing severe oxidative damage to the biomolecules leading to adverse disease conditions. Hence, there is an increasing interest in antioxidant studies for preventing the effects of these free radicals. Herein, we propose a novel electrospun scaffold with antioxidant properties that can be used as wound healing material.

View Article and Find Full Text PDF

Drawing inspiration from the field of designer self-assembling materials, this work is aimed to focus on the self-assembling nature of extracted peptides. Hair keratin, a proteinacious reject in tanning industry has been chosen since they have been extracted and used for wide range of applications. Keratin source was subjected to five hydrolysis treatments (viz.

View Article and Find Full Text PDF

Proteins grafted with antioxidant molecules have drawn much attention due to their increased life time and biocompatibility. When protein macromolecules are cross linked chemically and physically with antioxidant molecules, they can act as antioxidant biomaterials as well as scaffolds to release the antioxidant molecules by diffusion. In our work, we have attempted to release catechin molecules from the matrix of glutathione grafted gelatin.

View Article and Find Full Text PDF

Dynamic properties of water molecules present in the vicinity of protein are sensitive to its local conformational motions. Water mobility at the protein surface/interfaces is affected by its polar and charged groups, which are capable of anchoring water molecules through H-bonds. Differential scanning calorimetry, ATR-FTIR spectroscopy and circular dichroic analysis have been employed to substantiate the changes in hydration of gelatin, interacting with polycaprolactone.

View Article and Find Full Text PDF

Collagen-based biomaterials have received considerable attention for smarter biomedical applications due to their inherent superior mechano-biological properties. However, accumulating evidence suggests that water, as a probe liquid bound in collagen, might be investigated to explore the influence of additives on the static and dynamic solvation behavior of collagen. The structure and dynamics of water near the surface/interface of collagen-fenugreek composites were demonstrated via circular dichroic spectroscopy, thermoporometry and impedimetric measurements to enlighten about the configuration-function relationship of collagen.

View Article and Find Full Text PDF

Though various conventional methods are available to explore hydrogels, they have drawbacks such as analysis in solid state and failure to give insights into individual components of hydrogel viz. water (dispersion medium) and hydrophilic polymers (dispersed phase). The combined study of porosity and dielectric nature of hydrogel succeeds, in this context, as it investigates both the components individually.

View Article and Find Full Text PDF

Conventional studies on hydrogel properties such as viscosity, pH and swelling provide information without treating the components of hydrogel, viz., water and polymer individually. Water and hydrophilic polymers need to be studied individually to understand their relationship with each other to relate their influence on drug release.

View Article and Find Full Text PDF

"Go Green" campaign is gaining light for various industrial applications where water consumption needs to be reduced. To resolve this, industries have adopted usage of green, organic solvents, as an alternative to water. For leather making, tanning industry consumes gallons of water.

View Article and Find Full Text PDF

The effect of ionic liquids (ILs) on proteins has been gaining huge interest due to easy tunability of cation and anion for generating the desired effect. This study explores the effect of alkyl imidazolium chloride ILs on collagen at molecular, inter-fibrillar and skin matrix level. Circular dichroic studies reveal that at the molecular level, the secondary structure of collagen was not affected by imidazolium ILs and there was no change in thermal stability as well.

View Article and Find Full Text PDF

The intricacy of the different parameters involved in the hydration dynamics of collagen influences its performance as biomaterials. This work presents the molecular motions of collagen originating from the solvents and locust bean gum (LBG), which reveal the changes in solvation dynamics of the biopolymers affecting the surface as well as interfacial properties. Water, as a probe liquid bound in collagen has been investigated using a combination of thermoporometry, ATR-FTIR, circular dichroic spectroscopy, dielectric spectroscopy and SEM to explore the influence of LBG on collagen with respect to static and dynamic behaviour.

View Article and Find Full Text PDF

Naturally occurring biomaterials, such as gelatin and carrageenan are known to act as good drug delivering agents. The physical properties of these hydrogels are derived from their pore network. The effect of pore size distribution of hydrogel on the drug delivery process has been studied in this work.

View Article and Find Full Text PDF

Collagen-nanoparticle interactions are vital for many biomedical applications including drug delivery and tissue engineering applications. Iron oxide nanoparticles synthesized using starch template according to our earlier reported procedures were functionalized by treating them with Gum Arabic (GA), a biocompatible polysaccharide, so as to enhance the interaction between nanoparticle surfaces and collagen. Viscosity, circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR) techniques have been used to study the collagen-nanoparticle interactions.

View Article and Find Full Text PDF