Publications by authors named "Nishtar Nishad Fathima"

Research on the effect of UV radiation on stabilized collagen is an area of potential interest owing to the fact that collagen is an important biomaterial finding immense use in various fields. In this present study, effect of UV irradiation on collagen stabilized using chromium(III) has been studied. The physical and optical properties affected by UV irradiation have been detailed.

View Article and Find Full Text PDF

Catalytic wet hydrogen peroxide oxidation of an anionic dye has been explored in this study. Copper(II) complex of NN'-ethylene bis(salicylidene-aminato) (salenH2) has been encapsulated in super cages of zeolite-Y by flexible ligand method. The catalyst has been characterized by Fourier transforms infra red spectroscopy, X-ray powder diffractograms, Thermo-gravimetric and differential thermal analysis and nitrogen adsorption studies.

View Article and Find Full Text PDF

The widespread application of collagen as a biomaterial warrants research in understanding the stabilization of the same. In this study, interaction of iron-tetrakis (hydroxymethyl) phosphonium (THP) complex with type I collagen has been investigated. DSC and hydrothermal measurement studies reveal that the shrinkage temperature of iron-THP treated rat tail tendon (RTT) collagen is 33 degrees C higher than that of native RTT collagen.

View Article and Find Full Text PDF

Catalytic wet hydrogen peroxide oxidation of acid dye has been explored in this study. Manganese(III) complex of N,N'-ethylene bis(salicylidene-aminato) (salenH(2)) has been encapsulated in super cages of zeolite-Y by flexible ligand method. The catalyst has been characterized by FT-IR, XRD, TG/DTA and nitrogen adsorption studies.

View Article and Find Full Text PDF

The leather processing industry generates huge amounts of wastes, both in solid and liquid form. Fleshing from animal hides/skins is one such waste that is high in protein content. In this study, raw fleshing has been complexed with iron and is used for removal of chromium(VI).

View Article and Find Full Text PDF

Stabilization of type I rat tail tendon (RTT) collagen by various aldehydes, viz. formaldehyde, gluteraldehyde, glyoxal and crotanaldehyde was studied to understand the effect of each on the thermal, enzymatic and conformational stability of collagen. The aldehydes have been found to increase the heat stability of rat tail tendon collagen fibres from 62 to 77-86 degrees C.

View Article and Find Full Text PDF

Understanding the mechanism of stabilization of collagen is an important area of research. Metal ions are known to interact with collagen and bring about the stability of the same. In the present investigation, the interaction of zirconium(IV) complexes with collagen was studied.

View Article and Find Full Text PDF