The case discussion demonstrates the benefit of using Pharmacogenomic (PGx) results to aid in the selection of antidepressant therapy and improve response to treatment. Nearly half of patients diagnosed with major depressive disorder fail initial therapy and may require multiple trials of antidepressants. Genetic variation in several metabolic enzymes contribute to the variable response to antidepressant therapy.
View Article and Find Full Text PDFThe objective of this case report is to illustrate pharmacogenomics (PGx)-guided oxycodone treatment, given the conflicting data on the analgesic response from oxycodone in Cytochrome P450 (CYP)2D6 poor metabolizers (PMs). PGx-guided therapy can help improve treatment outcomes. This case report describes a 58-year-old patient who was prescribed oxycodone for chronic pain management.
View Article and Find Full Text PDFThe objective of this aims to demonstrate the advantage of a pharmacogenomics (PGx)-informed medication review in mitigating adverse drug events (ADEs) and optimizing therapeutic outcomes. PGx testing and PGx-informed medication reviews assist in mitigating ADEs. PGx testing was performed on a 68-year-old male presenting with uncontrolled chronic pain.
View Article and Find Full Text PDFBACKGROUND Comorbidities and polypharmacy are difficult to manage, as polypharmacy hinders identification and prevention of medication-related problems. Risk for adverse drug events (ADEs) can be minimized through pharmacogenomic (PGx) testing and related therapeutic adjustments. CASE REPORT A 70-year-old woman with comorbidities and medications enrolled in the Program of All-inclusive Care for the Elderly presented with left lower extremity (LLE) pain, generalized weakness, and major depressive disorder.
View Article and Find Full Text PDFPharmacotherapy for major depressive disorder (MDD) typically consists of trial-and-error and clinician preference approaches, where patients often fail one or more antidepressants before finding an optimal regimen. Pharmacogenomics (PGx) can assist in prescribing appropriate antidepressants, thereby reducing the time to MDD remission and occurrence of adverse drug events. Since many antidepressants are metabolized by and/or inhibit cytochrome P450 enzymes (e.
View Article and Find Full Text PDFThe opioid epidemic in the United States has exposed the need for providers to limit opioid dispensing and identify at-risk patients prior to prescribing opioids. With pharmacogenomic testing, clinicians can analyze hundreds of medications-including commonly prescribed opioids-against genetic results to understand and predict risk and response. Moreover, knowledge of genotypic variants and altered function can help decrease trial and error prescribing, identify patients at-risk for adverse drug events, and improve pain control.
View Article and Find Full Text PDFUtilizing pharmacogenomics (PGx) and integrating drug-induced phenoconversion to guide opioid therapies could improve the treatment response and decrease the occurrence of adverse drug events. Genetics contribute to the interindividual differences in opioid response. The purpose of this case report highlights the impact of a PGx-informed medication safety review, assisted by a clinical decision support system, in mitigating the drug-gene and drug-drug-gene interactions (DGI and DDGI, respectively) that increase the risk of an inadequate drug response and adverse drug events (ADEs).
View Article and Find Full Text PDFFront Cardiovasc Med
November 2021
Low-density lipoprotein cholesterol (LDL-C) is a modifiable risk factor for the development of atherosclerotic cardiovascular disease. Statins have been the gold standard for managing cholesterol levels and reducing the risks associated with atherosclerotic cardiovascular disease; however, many patients do not achieve their cholesterol goals or are unable to tolerate this drug class due to adverse drug events. Recent studies of non-statin cholesterol lowering drugs (i.
View Article and Find Full Text PDFPharmacogenomic (PGx) information can guide drug and dose selection, optimize therapy outcomes, and/or decrease the risk of adverse drug events (ADEs). This report demonstrates the impact of a pharmacist-led medication evaluation, with PGx assisted by a clinical decision support system (CDSS), of a patient with multiple comorbidities. Following several sub-optimal pharmacotherapy attempts, PGx testing was recommended.
View Article and Find Full Text PDFObjective: To evaluate pharmacist-encountered medication-related problems (MRPs) among the participants of the Program of All-Inclusive Care for the Elderly (PACE).
Design: This was a retrospective analysis of proprietary pharmacy records detailing pharmacist encounters with PACE clinical staff.
Setting And Participants: A national provider of pharmacy services to more than 75 PACE organizations.