Publications by authors named "Nisheeth C Desai"

Article Synopsis
  • * Researchers developed new linezolid bioisosteres with a modified side chain to enhance effectiveness and lower toxicity.
  • * One promising bioisostere showed better activity against certain resistant cells and was significantly less toxic than linezolid, indicating a safer treatment option.
View Article and Find Full Text PDF

Serotogenic toxicity is a major hurdle associated with Linezolid in the treatment of drug-resistant tuberculosis (TB) due to the inhibition of monoamine oxidase (MAO) enzymes. Azole compounds demonstrate structural similarities to the recognized anti-TB drug Linezolid, making them intriguing candidates for repurposing. Therefore, we have repurposed azoles (Posaconazole, Itraconazole, Miconazole, and Clotrimazole) for the treatment of drug-resistant TB with the anticipation of their selectivity in sparing the MAO enzyme.

View Article and Find Full Text PDF

Multidrug-resistant fungal infections have become much more common in recent years, especially in immune-compromised patients. Therefore, researchers and pharmaceutical professionals have focused on the development of novel antifungal agents that can tackle the problem of resistance. In continuation to this, a novel series of pyrazole-bearing pyrido[2,3-]pyrimidine-2,4(1,3)-dione derivatives (-) have been developed.

View Article and Find Full Text PDF

Due to multidrug resistance, microbial infections have become significant on a global level. As infections caused by several resistant bacteria and fungi severely harm mankind, scientists have developed new antibiotics to combat these infections. In order to develop novel antimicrobial agents, a series of 4-thiazolidinone-based 5-arylidene hybrids (5a-o) have been designed and synthesized to evaluate their antibacterial and antifungal activities.

View Article and Find Full Text PDF

Microwave-assisted organic reaction enhancement (MORE) has become more important in synthetic organic chemistry for efficient resource utilization. In this study, we synthesized bioactive compounds using both traditional and microwave methods. Microwave-assisted synthesis takes less time and produces higher yields and quality than conventional approaches.

View Article and Find Full Text PDF

Drug resistance in tuberculosis poses a serious threat to humanity because currently available antitubercular drugs are ineffective against Mycobacterium tuberculosis (M. tuberculosis). As a result, the approval of Bedaquiline and Delamanid for the treatment of drug-resistant tuberculosis was accelerated.

View Article and Find Full Text PDF

In order to develop the antimicrobial and antitubercular agents, we have derived quinoline bearing dihydropyrimidine analogues 5a-o and structures of these compounds were determined by spectroscopic techniques. Further, we have calculated the molecular properties prediction and drug-likeness by Molinspiration property calculation toolkit and MolSoft software, respectively. The most active compound against Mycobacterium tuberculosis (5m, MIC = 0.

View Article and Find Full Text PDF

Microbial resistance is a major problem faced by the scientific community. It has created an urgent need to develop antimicrobial agents with novel structures and mechanisms of action. With this aim, a series of novel 1,3,4-oxadiazoles bearing 3,4-dihydropyrimidine heterocyclic motifs 4a-l were designed and synthesized.

View Article and Find Full Text PDF

Introduction: The prevalence of metabolic syndrome, obesity and insulin resistance has become an epidemic. Thiazolidinediones (TZDs) affect glucose and lipid metabolism in insulin-sensitive tissues, which in turn reduces the lipid content in the liver by modulating several mediators. TZD as a hypoglycemic agent decrease blood sugar levels.

View Article and Find Full Text PDF

A series of novel 1,4-dihydropyridine-3,5-dicarbamoyl derivatives bearing an imidazole nucleus at C-4 position were synthesized in excellent yields via multicomponent Hantzsch reaction. The newly synthesized compounds were characterized by IR, (1) H NMR, (13) C NMR, and mass spectroscopy. The synthesized compounds 3a-p were screened for antitubercular activity.

View Article and Find Full Text PDF

Two new series of N-3 substituted thiazolidine-2,4-dione derivatives bearing the pyrazole moiety (5a-j and 7a-j) were synthesized and assessed in vitro for their efficacy as antibacterial agents against gram-positive and gram-negative bacterial strains. Among the tested compounds, 7b, 7c, 7i, and 7j were found to be active against gram-positive bacteria (Staphylococcus aureus and Streptococcus pyogenes) with minimum inhibitory concentration (MIC) values in the range of 6.25-25 µg/mL, and some compounds were also tested against methicillin-resistant S.

View Article and Find Full Text PDF

A series of novel compounds 6-amino-1-((1,3-diphenyl-1H-pyrazole-4-yl)methyleneamino)-4-(aryl)-2-oxo-1,2-dihydropyridine-3,5-dicarbonitriles (4a-t) were synthesized and characterized by IR, (1)H NMR, (13)C NMR and mass spectral data. These compounds were screened for their in vitro antibacterial activity against Staphylococcus aureus, Streptococcus pyogenes (Gram positive), Escherichia coli, Pseudomonas aeruginosa (Gram negative) by serial broth dilution and cytotoxic activity (NIH 3T3 & HeLa) by MTT assay. The results indicated that compounds 4g, 4i, 4m, 4o, 4r and 4t exhibit potent antibacterial activity against bacterial strains at non-cytotoxic concentrations.

View Article and Find Full Text PDF

The synthesis of a novel series of 2-(5-(2-chloro-6-fluoroquinolin-3-yl)-3-(aryl)-4,5-dihydro-1H-pyrazol-1-yl)thiazol-4(5H)-ones (4a-l) and N-(4-(2-chloro-6-fluoroquinolin-3-yl)-6-(aryl)pyrimidin-2-yl)-2-morpholinoacetamides (7a-l) are described in the present paper. The chemical structures of compounds have been elucidated by IR, (1)H NMR, (13)C NMR and mass spectral data. Antimicrobial activity was measured against Escherichia coli (MTCC 443), Pseudomonas aeruginosa (MTCC 1688), Staphylococcus aureus (MTCC 96), Streptococcus pyogenes (MTCC 442), Candida albicans (MTCC 227), Aspergillus niger (MTCC 282) and Aspergillus clavatus (MTCC 1323) by serial broth dilution.

View Article and Find Full Text PDF