Lupus Nephritis (LN) is a severe complication of systemic lupus erythematosus (SLE) that affects kidney function. Here, we investigated the role of CD11b, a protein encoded by the gene, in the development of LN and its functional activation as a therapeutic strategy. Genetic coding variants of significantly increase the risk for SLE and LN by producing a less active CD11b and leading to elevated levels of type I interferon (IFN I).
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
September 2024
Di-2-ethylhexyl phthalate (DEHP) is the most commonly preferred synthetic organic chemical in plastics and its products for making them ductile, flexible and durable. As DEHP is not chemically bound to the macromolecular polymer of plastics, it can be easily leached out to accumulate in food and environment. Our recent report advocated that exposure to DEHP significantly transformed the innate bottom-dwelling and scototaxis behaviour of zebrafish.
View Article and Find Full Text PDFType I interferon (IFN-I) response is the first line of host defense against invading viruses. In the absence of definite mouse models, the role of IFN-I in SARS-CoV-2 infection remains perplexing. Here, we develop two mouse models, one with constitutively high IFN-I response (hACE2; Irgm1) and the other with dampened IFN-I response (hACE2; Ifnar1), to comprehend the role of IFN-I response.
View Article and Find Full Text PDFThe contamination of life-sustaining environments with synthetic pollutants such as plastic-derived compounds has increased at an alarming rate in recent decades. Among such contaminants, di-2-ethylhexyl phthalate (DEHP) is an extensively used compound in plastics and plastic products to make them flexible. DEHP causes several adverse effects such as reproductive toxicity leading to infertility, miscarriage and litter size reduction, disruption of the thyroid endocrine system, oxidative stress, neurodevelopmental defect and cognitive impairment.
View Article and Find Full Text PDFAs bisphenol A (BPA) effortlessly crosses the blood-brain barrier, its serious impacts on the neuronal microenvironment towards precocious induction of oxidative stress and neuromorphological alteration can't be ignored. Incidentally, a symmetric study establishing the possible link of transformed neurobehavior with heightened monoamine oxidase (MAO) activity and neuromorphological alteration in zebrafish brain subsequent to BPA-exposure is limiting in the literature. The study was conducted to delineate the role of BPA towards the genesis of aggressive behaviour in zebrafish and its correlation with brain MAO activity.
View Article and Find Full Text PDFThe NOD1/2-RIPK2 is a key cytosolic signaling complex that activates NF-κB pro-inflammatory response against invading pathogens. However, uncontrolled NF-κB signaling can cause tissue damage leading to chronic diseases. The mechanisms by which the NODs-RIPK2-NF-κB innate immune axis is activated and resolved remain poorly understood.
View Article and Find Full Text PDFNeuropsychiatric upshots following chronic exposure to unpredictable adverse stressors have been well documented in the literature. Considering the significant impact of chronic unpredictable stress (CUS), the literature is elusive regarding the neuroprotective efficacy of taurine against CUS-induced oxidative stress and chromatin condensation in the zebrafish brain. In this study, to ameliorate CUS-persuaded neurological outcomes, waterborne treatment of taurine as a prophylactic intervention was undertaken.
View Article and Find Full Text PDFExtensive crosstalk exists between autophagy and innate immune signalling pathways. The stimuli that induce pattern recognition receptor (PRR)-mediated innate immune signalling pathways, also upregulate autophagy. The purpose of this increased autophagy is to eliminate the stimuli and/or suppress the inflammatory pathways by targeted degradation of PRRs or intermediary proteins (termed 'inflammophagy').
View Article and Find Full Text PDFModelling of chronic stress conditions in experimental animals and its neuropsychiatric outcomes has been well documented in literature. Zebrafish (Danio rerio) by exhibiting significant genetic and epidemiological similarities with human beings, has now emerged as a promising animal model of translational research. In this line, risk assessment following exposure to chronic unpredictable stress (CUS) towards neurobehavioral response and neuromorphology of sensitive brain region in zebrafish is the prime objective of the present study.
View Article and Find Full Text PDFThe type I interferon (IFN) response is the major host arsenal against invading viruses. IRGM is a negative regulator of IFN responses under basal conditions. However, the role of human IRGM during viral infection has remained unclear.
View Article and Find Full Text PDFEnviron Toxicol
November 2021
Bisphenol A (BPA) has been documented as a mediator for a number of health effects, including inflammation, oxidative stress, carcinogenicity, and mood dysfunction. The literature on the role of BPA in inducing altered neurobehavioral response and brain morphology and plausible neuroprotective role of taurine against BPA induced oxidative stress mediated neurotoxicity is limited. Therefore, the present experimental paradigm was set for 21 days to expound the neuroprotective efficacy of taurine against BPA-induced neurotoxicity in zebrafish (Danio rerio) following waterborne exposure.
View Article and Find Full Text PDFIncreasing incidences of neurological disorders, such as Parkinson's disease (PD), multiple sclerosis (MS), Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS) are being reported, but an insight into their pathology remains elusive. Findings have suggested that gut microbiota play a major role in regulating brain functions through the gut-brain axis. A unique bidirectional communication between gut microbiota and maintenance of brain health could play a pivotal role in regulating incidences of neurodegenerative diseases.
View Article and Find Full Text PDFDZIP3/hRUL138 is a poorly characterized RNA-binding RING E3-ubiquitin ligase with functions in embryonic development. Here we demonstrate that DZIP3 is a crucial driver of cancer cell growth, migration, and invasion. In mice and zebrafish cancer models, DZIP3 promoted tumor growth and metastasis.
View Article and Find Full Text PDFHeat exposure is an environmental stress that causes diverse heat related pathophysiological changes under extreme conditions. The brain including hippocampal region which is associated with learning and memory is significantly affected by heat stress resulting in memory impairment. However, the effect of heat on the spatial memory remains unclear.
View Article and Find Full Text PDFIRGM is a genetic risk factor for several autoimmune diseases. However, the mechanism of IRGM-mediated protection in autoimmunity remains undetermined. The abnormal activation of type I interferon (IFN) response is one of the significant factors in the pathogenesis of several autoimmune diseases.
View Article and Find Full Text PDFActivation of the type 1 interferon response is extensively connected to the pathogenesis of autoimmune diseases. Loss of function of Immunity Related GTPase M (IRGM) has also been associated to several autoimmune diseases, but its mechanism of action is unknown. Here, we found that IRGM is a master negative regulator of the interferon response.
View Article and Find Full Text PDFIRGM is an established genetic risk factor for Crohn disease (CD) and several other inflammatory disorders. However, the mechanisms employed by IRGM to restrain the inflammation are not known. In our recent study, we showed that IRGM negatively regulates NLRP3 inflammasome activation.
View Article and Find Full Text PDFAutophagy
May 2019
The formation of protein aggregates is linked to several diseases collectively called proteinopathies. The mechanisms and the molecular players that control the turnover of protein aggregates are not well defined. We recently showed that TRIM16 acts as a key regulatory protein to control the biogenesis and degradation of protein aggregates.
View Article and Find Full Text PDFIncreased environmental temperature exerts a visible impact on an individual's physiology. At the onset of heat stress, there is an increase in core body temperature which triggers peripheral vasodilation and sweating in an effort to dissipate the elevated body heat. The increase in peripheral circulation however reduces blood flow to the internal organs which are thus adversely affected.
View Article and Find Full Text PDFHeat Stress (HS) induces diverse pathophysiological changes, which include brain ischemia, oxidative stress and neuronal damage. The present study was undertaken with the objective to ascertain whether neuroinflammation in Hypothalamus (HTH) caused under HS affects monoamine levels and hence, its physiological role in thermoregulation. Rats were exposed to HS in a heat simulation environmental chamber (Ambient temperature, Ta=45±0.
View Article and Find Full Text PDF