Publications by authors named "Nishant Dogra"

We realize a turbulent cascade of wave excitations in a homogeneous 2D Bose gas and probe on all relevant time and length scales how it builds up from small to large momenta, until the system reaches a steady state with matching energy injection and dissipation. This all-scales view directly reveals the two theoretically expected cornerstones of turbulence formation-the emergence of statistical momentum-space isotropy under anisotropic forcing and the spatiotemporal scaling of the momentum distribution at times before any energy is dissipated.

View Article and Find Full Text PDF

We report on the experimental realization and detection of dynamical currents in a spin-textured lattice in momentum space. Collective tunneling is implemented via cavity-assisted Raman scattering of photons by a spinor Bose-Einstein condensate into an optical cavity. The photon field inducing the tunneling processes is subject to cavity dissipation, resulting in effective directional dynamics in a non-Hermitian setting.

View Article and Find Full Text PDF

Superfluidity in its various forms has been of interest since the observation of frictionless flow in liquid helium II. In three spatial dimensions it is conceptually associated with the emergence of long-range order at a critical temperature. One of the hallmarks of superfluidity, as predicted by the two-fluid model and observed in both liquid helium and in ultracold atomic gases, is the existence of two kinds of sound excitation-the first and second sound.

View Article and Find Full Text PDF

Dissipative and unitary processes define the evolution of a many-body system. Their interplay gives rise to dynamical phase transitions and can lead to instabilities. In this study, we observe a nonstationary state of chiral nature in a synthetic many-body system with independently controllable unitary and dissipative couplings.

View Article and Find Full Text PDF

We experimentally study the stability of a bosonic Mott insulator against the formation of a density wave induced by long-range interactions and characterize the intrinsic dynamics between these two states. The Mott insulator is created in a quantum degenerate gas of 87-Rubidium atoms, trapped in a 3D optical lattice. The gas is located inside and globally coupled to an optical cavity.

View Article and Find Full Text PDF

Insights into complex phenomena in quantum matter can be gained from simulation experiments with ultracold atoms, especially in cases where theoretical characterization is challenging. However, these experiments are mostly limited to short-range collisional interactions; recently observed perturbative effects of long-range interactions were too weak to reach new quantum phases. Here we experimentally realize a bosonic lattice model with competing short- and long-range interactions, and observe the appearance of four distinct quantum phases--a superfluid, a supersolid, a Mott insulator and a charge density wave.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session4bb3sl59oq2433917u6cikl3al7fpsiv): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once