Publications by authors named "Nishant A Dafale"

The residual pesticides in soil can affect the natural microbiome composition and genetic profile that drive nutrient cycling and soil fertility. In the present study, metagenomic approach was leveraged to determine modulations in nutrient cycling and microbial composition along with connected nexus of pesticide, antibiotic, and heavy metal resistance in selected crop and fallow soils having history of consistent pesticide applications. GC-MS analysis estimated residuals of chlorpyrifos, hexachlorbenzene, and dieldrin showing persistent nature of pesticides that pose selective pressure for microbial adaptation.

View Article and Find Full Text PDF

The microbial composition and stress molecules are main drivers influencing the development and spread of antibiotic resistance bacteria (ARBs) and genes (ARGs) in the environment. A reliable and rapid method for identifying associations between microbiome composition and resistome remains challenging. In the present study, secondary metagenome data of sewage and hospital wastewaters were assessed for differential taxonomic and ARG profiling.

View Article and Find Full Text PDF

Sub-lethal levels of antibiotic stimulate bacteria to generate reactive oxygen species (ROS) that promotes emergence and spread of antibiotic resistance mediated by mobile genetic elements (MGEs). Nevertheless, the influence of dissolved oxygen (DO) levels on mobility of antibiotic resistance genes (ARGs) in response to ROS-induced stress remains elusive. Thus, the study employs metagenomic assembly and binning approaches to decipher mobility potential and co-occurrence frequency of ARGs and MGEs under hyperoxic (5.

View Article and Find Full Text PDF

The potential of hydrolytic enzyme cocktail obtained from designed bacterial consortium WSh-1 comprising Bacillus subtilis CRN 16, Paenibacillus dendritiformis CRN 18, Niallia circulans CRN 24, Serratia marscens CRN 29, and Streptomyces sp. CRN 30, was investigated for maximum saccharification. Activity was further enhanced to 1.

View Article and Find Full Text PDF

An increase in acquisition of antibiotic resistance genes (ARGs) by pathogens under antibiotic selective pressure poses public health threats. Sub-inhibitory antibiotics induce bacteria to generate reactive oxygen species (ROS) dependent on dissolved oxygen (DO) levels, while molecular connection between ROS-mediated ARG emergence through DNA damage and metabolic changes remains elusive. Thus, the study investigates antibiotic resistome dynamics, microbiome shift, and pathogen distribution in hyperoxic (5-7 mg L), normoxic (2-4 mg L), and hypoxic (0.

View Article and Find Full Text PDF

Genus Niallia has recently been separated taxonomic group from the Bacillus based on conserved signature indels in the genome. Unlike bioremediation, its role in plant biomass hydrolysis has not garnered considerable attention. The present study investigates the genomic potential of a novel Niallia sp.

View Article and Find Full Text PDF

Large amounts of antibiotics have been discharged into wastewater during the COVID-19 pandemic due to overuse and misuse of antibiotics to treat patients. Wastewater-based surveillance can be used as an early warning for antibiotic resistance (AR) emergence. The present study analyzed municipal wastewater corresponding to the major pandemic waves (WW1, WW2, and WW3) in India along with hospital wastewater (Ho) taken as a benchmark for AR.

View Article and Find Full Text PDF

Chlorpyrifos (CP) is an extensively used organophosphate (OP) pesticide that inhibits the biogeochemical cycle with subsequent loss of soil fertility. In this view, indigenous soil bacteria with significant CP degradation capacity were identified as Pseudomonas aeruginosa RNC3 and Stenotrophomonas maltophilia RNC7 through 16 S rRNA. The optimum values of independent variables for CP degradation were found to be 30 ℃, pH 7, 100 mgL of CP, and 1 OD cell culture RNC3 and RNC7 showed 82.

View Article and Find Full Text PDF

Imidacloprid, a neonicotinoid pesticide, is employed to increase crop productivity. Meanwhile, its indiscriminate application severely affects the non-target organisms and the environment. As an eco-friendly and economically workable option, the microbial intervention has garnered much attention.

View Article and Find Full Text PDF

Rumen inhabiting Bacillus species possesses a high genetic potential for plant biomass hydrolysis and conversion to value-added products. In view of the same, five camel rumen-derived Bacillus strains, namely B. subtilis CRN 1, B.

View Article and Find Full Text PDF

The differential gene expression under phosphate stress conditions leads to cross-talk between the global regulator, pho regulon, and metabolic genes. Promoter activity analysis of the selected 23 genes reveals the dynamic nature of real-time gene expression under different phosphate conditions. The expression profiles of the global regulator (rpoD, soxR, soxS, arcB, and fur), pho regulon (phoH, phoR, phoB, and ugpB), and metabolic genes (sdh, pfkA, ldh) varied significantly on phosphate level variation.

View Article and Find Full Text PDF

Microbes play a major role in phosphate cycling and regulate its availability in various environments. The metagenomic study highlights the microbial community divergence and interplay of phosphate metabolism functional genes in response to phosphate rich (100 mgL), limiting (25 mgL), and stressed (5 mgL) conditions at lab-scale bioreactor. Total five core phyla were found responsive toward different phosphate (Pi) levels.

View Article and Find Full Text PDF

Reconstruction of genomes from environmental metagenomes offers an excellent prospect for studying the metabolic potential of organisms resilient to isolation in laboratory conditions. Here, we assembled 12 high-quality metagenome-assembled genomes (MAGs) with an estimated completion of ≥ 90% from cow and buffalo rumen metagenomes. Average nucleotide identity (ANI) score-based screening with an existing database suggests the novelty of these genomes.

View Article and Find Full Text PDF

The major reason behind the spread of antibiotic resistance genes (ARGs) is persistent selective pressure in the environment encountered by bacteria. Genome plasticity plays a crucial role in dissemination of antibiotic resistance among bacterial pathogens. Mobile genetic elements harboring ARGs are reported to dodge bacterial immune system and mediate horizontal gene transfer (HGT) under selective pressure.

View Article and Find Full Text PDF

Pesticides play a significant role in crop production and have become an inevitable part of the modern environment due to their extensive distribution throughout the soil ecosystem. Prophylactic applications of chlorpyrifos (CP) affect soil fertility, modify soil microbial community structure, and pose potential health risks to the nontarget organisms. Bioremediation through microbial metabolism is found to be an ecofriendly and cheaper process for CP removal from the environment.

View Article and Find Full Text PDF

Unlabelled: Genome sequencing of PVN-1, isolated from effluent treatment plant (ETP), generates a 5.064 Mb draft genome with 57.6% GC content.

View Article and Find Full Text PDF

The bacterial communities are challenged with oxidative stress during their exposure to bactericidal antibiotics, metals, and different levels of dissolved oxygen (DO) encountered in diverse environmental habitats. The frequency of antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) co-selection is increased by selective pressure posed by oxidative stress. Hence, study of resistance acquisition is important from an evolutionary perspective.

View Article and Find Full Text PDF

Bacterial esterases are gaining the importance in pharmaceuticals and agrochemical industries due to their excellent biocatalytic properties and a wide range of applications. In the present study, a novel gene encoding an esterase (designated as Est-CR) was identified from shotgun metagenomic sequencing data of camel rumen (Camelus dromedarius) liquor. The open reading frame consisted of 1,224bp, which showed 84.

View Article and Find Full Text PDF

In dromedary camels, which are pseudo-ruminants, rumen or C1 section of stomach is the main compartment involved in fiber degradation, as in true ruminants. However, as camels are adapted to the harsh and scarce grazing conditions of desert, their ruminal microbiota makes an interesting target of study. The present study was undertaken to generate the rumen microbial profile of Indian camel using 16S rRNA amplicon and shotgun metagenomics.

View Article and Find Full Text PDF

Treatment of wastewater prior to release in water bodies is an imperative need of the current time to address the global water crises. Thus, consortium MCSt-1 was designed for an effective wastewater treatment based on its cellulolytic, proteolytic, lipolytic, phenol and sodium dodecyl sulfate degrading activities along with effective nutrient removal capacity. Performance of the designed consortium was assayed using two differently configured lab-scale bioreactors as subjected to immobilization on two different matrices (pebbles and nylon mesh).

View Article and Find Full Text PDF

Prophylactic usage and high persistent nature of several antibiotics have put selective pressure on the native microbial population that led to the emergence, propagation, and persistence of antibiotic resistance in nature. The surveillance of antibiotic resistome pattern and identification of points of intervention throughout the different environmental habitats will help to break the flow of antibiotic resistance from environmental bacteria to human pathogens. The present study compares the occurrence, diversity, and abundance of ARGs in industrial sludge, wetland sludge, and sediment sample contaminated with pharmaceutical discharge.

View Article and Find Full Text PDF

Recently discovered Lytic Polysaccharide Mono-Oxygenase (LPMO) enhances the enzymatic deconstruction of complex polysaccharide by oxidation. The present study demonstrates the agricultural waste hydrolyzing capabilities of Paenibacillus dendritiformis CRN18, which exhibits the enzyme activity of exo-glucanase, β-glucosidase, β-glucuronidase, endo-1, 4 β-xylanases, arabinosidase, and α-galactosidase as 0.1U/ml, 0.

View Article and Find Full Text PDF

Cellulose is the most abundant natural polymer present on Earth in the form of agriculture waste. Hydrolysis of agriculture waste for simple fermentable reducing sugars is the bottleneck in the area of biofuel generation and other value-added products. The present study aims to utilize the camel rumen as a bioreactor for potent cellulolytic and hemicellulolytic bacteria by altering the feed types with varying cellulosic concentrations.

View Article and Find Full Text PDF

In addition to a wide variety of anaerobic and facultative anaerobic bacteria, camel rumen also harbors a diverse of eukaryotic organisms. In the present study, the eukaryotic communities of camel rumen were characterized using 18S rRNA amplicon sequencing. Metagenomic DNA was isolated from rumen samples of fourteen adult Bikaneri and Kachchhi breeds of camel fed different diets containing Jowar, Bajra, Maize, and Guar.

View Article and Find Full Text PDF

Current scenario in communicable diseases has generated new era that identifies the "One health" approach to understand the sharing and management of etiological agents with its impact on ecosystem. Under this context the relevance of zoonotic diseases generates major concern. The indiscriminate and higher use of antibiotics in animal husbandry creates substantial pressure on the gut microbiome for development of resistance due to shorter generation time and high density.

View Article and Find Full Text PDF