Globally, 90% of plastics are synthetic, made up of crude oil, natural gas, and coal. Even though plastic is extremely useful in our lives, its excessive use and mismanaged disposal are negatively affecting the ecosystem. The review highlights that the recycling process plays a critical role in controlling the problem of plastic pollution.
View Article and Find Full Text PDFPlastic waste from fossil-based sources, including single-use packaging materials, is continuously accumulating in landfills, and leaching into the environment. A 2021 UN Environment Programme (UNEP) report suggests that the plastic pollution is likely to be doubled by 2030, posing a major challenge to the environment and the overall global plastic waste management efforts. The use of biobased plastics such as polyhydroxyalkanoates (PHAs) as a biodegradable substitute for petroleum-based plastics could be a feasible option to combat this issue which may further result in much lower carbon emissions and energy usage in comparison to conventional plastics as additional advantages.
View Article and Find Full Text PDFThe current work provides insights for improving the hydrogen output while degrading emerging contaminants using Rhodopseudomonas palustris. The changes in the growth rate of a microorganism due to different substrate inputs affects the hydrogen production due to metabolic route changes. The different ratios of glutamate and glycerol as nitrogen and carbon sources along with the presence of ethinylestradiol (EE2) in the photofermenter affected the flux of electrons being directed towards biosynthesis and biohydrogen generation.
View Article and Find Full Text PDF