Sequence variation among homologous proteins can shed light on their function and ancestry. In this study, we analyze variation at catalytic residues among MCR (mobile colistin resistance) proteins, which confer resistance to the last resort antibiotic, colistin, in gram-negative bacteria. We show that not all naturally occurring variants at a lipid A-binding residue, Ser284, are tolerated in MCR-1.
View Article and Find Full Text PDFBacteria employ a number of mechanisms to adapt to antibiotics. Mutations in transcriptional regulators alter the expression levels of genes that can change the susceptibility of bacteria to antibiotics. Two-component signaling proteins are a major class of signaling molecule used by bacteria to regulate transcription.
View Article and Find Full Text PDFAdaptive laboratory evolution (ALE) of bacteria has the potential to provide many insights like revealing novel mechanisms of resistance and elucidating the impact of drug combinations and concentrations on AMR evolution. Here, we describe a step-by-step ALE protocol for the model bacterium Escherichia coli that can be easily adapted to answer questions related to evolution and genetics of AMR in diverse bacteria. Key issues to consider when designing ALE experiments as well as some downstream mutation mapping analyses are described.
View Article and Find Full Text PDFGene regulatory networks allow organisms to generate coordinated responses to environmental challenges. In bacteria, regulatory networks are re-wired and re-purposed during evolution, though the relationship between selection pressures and evolutionary change is poorly understood. In this study, we discover that the early evolutionary response of to the antibiotic trimethoprim involves derepression of PhoPQ signaling, an Mg-sensitive two-component system, by inactivation of the MgrB feedback-regulatory protein.
View Article and Find Full Text PDFEvolutionary trajectories and mutational landscapes of drug-resistant bacteria are influenced by cell-intrinsic and extrinsic factors. In this study, I demonstrated that loss of the Lon protease altered susceptibility of to trimethoprim and that these effects were strongly contingent on the drug concentration and genetic background. Lon, an AAA ATPase, is a bacterial master regulator protease involved in cytokinesis, suppression of transposition events, and clearance of misfolded proteins.
View Article and Find Full Text PDFAn explosion of sequence information in the genomics era has thrown up thousands of protein sequences without functional assignment. Though our ability to predict function based on sequence alone is improving steadily, we still have a long way to go. Proteins with common evolutionary origins carry telling sequence signatures, which ought to reveal their biological roles.
View Article and Find Full Text PDFNovel genotypes evolve under selection through mutations in pre-existing genes. However, mutations have pleiotropic phenotypic effects that influence the fitness of emerging genotypes in complex ways. The evolution of antimicrobial resistance is mediated by selection of mutations in genes coding for antibiotic-target proteins.
View Article and Find Full Text PDFStructural stability is a major constraint on the evolution of protein sequences. However, under strong directional selection, mutations that confer novel phenotypes but compromise structural stability of proteins may be permissible. During the evolution of antibiotic resistance, mutations that confer drug resistance often have pleiotropic effects on the structure and function of antibiotic-target proteins, usually essential metabolic enzymes.
View Article and Find Full Text PDFFEMS Microbiol Lett
November 2015
Cyclic-3',5'-adenosine monophosphate (cAMP) is a universal second messenger that regulates vital activities in bacteria and eukaryotes. Enzymes that hydrolyze cAMP, called phosphodiesterases (PDEs), negatively regulate the levels of this messenger molecule and are therefore crucial for signal 'termination'. In this minireview, I shall summarize the available literature on bacterial cAMP-PDEs, with particular emphasis on enzymes belonging to the ubiquitously encoded Class III PDE family exemplified by CpdA from Escherichia coli and Rv0805 from Mycobacterium tuberculosis.
View Article and Find Full Text PDFCalcineurin-like metallophosphoesterases (MPEs) form a large superfamily of binuclear metal-ion-centre-containing enzymes that hydrolyse phosphomono-, phosphodi- or phosphotri-esters in a metal-dependent manner. The MPE domain is found in Mre11/SbcD DNA-repair enzymes, mammalian phosphoprotein phosphatases, acid sphingomyelinases, purple acid phosphatases, nucleotidases and bacterial cyclic nucleotide phosphodiesterases. Despite this functional diversity, MPEs show a remarkably similar structural fold and active-site architecture.
View Article and Find Full Text PDFBacteria can utilize multiple sources of carbon for growth, and for pathogenic bacteria like Mycobacterium tuberculosis, this ability is crucial for survival within the host. In addition, phenotypic changes are seen in mycobacteria grown under different carbon sources. In this study, we use Raman spectroscopy to analyze the biochemical components present in M.
View Article and Find Full Text PDFDespite highly conserved core catalytic domains, members of the metallophosphoesterase (MPE) superfamily perform diverse and crucial functions ranging from nucleotide and nucleic acid metabolism to phospholipid hydrolysis. Unique structural elements outside of the catalytic core called "cap domains" are thought to provide specialization to these enzymes; however, no directed study has been performed to substantiate this. The cap domain of Rv0805, an MPE from Mycobacterium tuberculosis, is located C-terminal to its catalytic domain and is dispensable for the catalytic activity of this enzyme in vitro.
View Article and Find Full Text PDFChromatin immunoprecipitation identified 191 binding sites of Mycobacterium tuberculosis cAMP receptor protein (CRP(Mt)) at endogenous expression levels using a specific α-CRP(Mt) antibody. Under these native conditions an equal distribution between intragenic and intergenic locations was observed. CRP(Mt) binding overlapped a palindromic consensus sequence.
View Article and Find Full Text PDFThe Rv0805 gene in Mycobacterium tuberculosis encodes a metallophosphoesterase which shows cAMP-hydrolytic activity. Overexpression of Rv0805 has been used as a tool to lower intracellular cAMP levels and thereby elucidate the roles of cAMP in mycobacteria. Here we show that levels of cAMP in M.
View Article and Find Full Text PDFThe importance of inter- and intracellular signal transduction in all forms of life cannot be underestimated. A large number of genes dedicated to cellular signalling are found in almost all sequenced genomes, and Mycobacteria are no exception. What appears to be interesting in Mycobacteria is that well characterized signalling mechanisms used by bacteria, such as the histidine-aspartate phosphorelay seen in two-component systems, are found alongside signalling components that closely mimic those seen in higher eukaryotes.
View Article and Find Full Text PDFMycobacterium tuberculosis utilizes many mechanisms to establish itself within the macrophage, and bacterially derived cAMP is important in modulating the host cellular response. Although the genome of M. tuberculosis is endowed with a number of mammalian-like adenylyl cyclases, only a single cAMP phosphodiesterase has been identified that can decrease levels of cAMP produced by the bacterium.
View Article and Find Full Text PDF