Unlabelled: Oncogenic TRK fusions induce cancer cell proliferation and engage critical cancer-related downstream signaling pathways. These TRK fusions occur rarely, but in a diverse spectrum of tumor histologies. LOXO-101 is an orally administered inhibitor of the TRK kinase and is highly selective only for the TRK family of receptors.
View Article and Find Full Text PDFIntroduction: Omacetaxine mepesuccinate (omacetaxine) is a first-in-class cephalotaxine that has demonstrated efficacy in CML. In this analysis we evaluated omacetaxine in CML patients with resistance or intolerance to 2 or more tyrosine kinase inhibitors (TKIs).
Patients And Methods: Data were pooled from 2 phase II trials of subcutaneous omacetaxine, administered at 1.
Purpose: Omacetaxine mepesuccinate is a first-in-class cephalotaxine demonstrating clinical activity in chronic myeloid leukemia. A subcutaneous (SC) formulation demonstrated efficacy and safety in phase 1/2 trials in patients previously treated with ≥1 tyrosine kinase inhibitor. This study assessed pharmacokinetics and safety of SC omacetaxine in patients with advanced cancers.
View Article and Find Full Text PDFChronic myeloid leukemia (CML) patients with the BCR-ABL T315I mutation do not benefit from therapy with currently approved tyrosine kinase inhibitors. Omacetaxine mepesuccinate is a protein synthesis inhibitor that has demonstrated activity in cells harboring the T315I mutation. This phase 2 trial assessed the efficacy of omacetaxine in CML patients with T315I and tyrosine kinase inhibitor failure.
View Article and Find Full Text PDFAlthough current antiplatelet therapies provide potent antithrombotic effects, their efficacy is limited by a heightened risk of bleeding and failure to affect vascular remodeling after injury. New lines of research suggest that thrombosis and hemorrhage may be uncoupled at the interface of pathways controlling thrombosis and inflammation. Here, as one remarkable example, studies using a novel and highly selective pharmacologic inhibitor of the spleen tyrosine kinase Syk [PRT060318; 2-((1R,2S)-2-aminocyclohexylamino)-4-(m-tolylamino)pyrimidine-5-carboxamide] coupled with genetic experiments, demonstrate that Syk inhibition ameliorates both the acute and chronic responses to vascular injury without affecting hemostasis.
View Article and Find Full Text PDFHeparin-induced thrombocytopenia (HIT) is a major cause of morbidity and mortality resulting from the associated thrombosis. Extensive studies using our transgenic mouse model of HIT have shown that antibodies reactive with heparin-platelet factor 4 complexes lead to FcγRIIA-mediated platelet activation in vitro as well as thrombocytopenia and thrombosis in vivo. We tested PRT-060318 (PRT318), a novel selective inhibitor of the tyrosine kinase Syk, as an approach to HIT treatment.
View Article and Find Full Text PDFPlatelet aggregation is a dynamic entity, capable of directing its own growth and stability via the activation of signaling cascades that lead to the expression and secretion of various secondary agonists. Recent data using proteomics and genomics strategies have established that signaling pathways during platelet aggregation are triggered by two homophilic adhesion molecules, CD84 and CD150 (SLAM), and by a novel EGF-containing receptor, PEAR1, which are tyrosine-phosphorylated in a platelet-aggregation-dependent fashion (N. Nanda, P.
View Article and Find Full Text PDFPlatelet aggregation is a dynamic entity, capable of directing its own growth and stability via the activation of signaling cascades that lead to the expression and secretion of various secondary agonists. Here we show that the signaling pathways triggered during platelet aggregation include an intrinsic pro-thrombotic activity mediated by 2 homophilic adhesion molecules, CD84 and CD150 (SLAM [signaling lymphocyte activation molecule]), which are tyrosine phosphorylated in a platelet aggregation-dependent fashion. The 2 CD84/SLAM adapter proteins, SAP (SLAM-associated protein) and EAT-2 (EWS-activated transcript-2), were found in platelets; only SAP, however, was found to immunoprecipitate with tyrosine-phosphorylated SLAM.
View Article and Find Full Text PDFThe present study was designed to identify novel membrane proteins that signal during platelet aggregation. Because one putative mechanism for signaling by a membrane protein involves phosphorylation, we used oligonucleotide-based microarray analyses and mass spectrometric proteomics techniques to specifically discover membrane proteins and also identify those proteins that become phosphorylated on tyrosine, threonine, or serine residues upon platelet aggregation. Surprisingly, both techniques converged to identify a novel membrane protein we have termed PEAR1 (platelet endothelial aggregation receptor 1).
View Article and Find Full Text PDFTissue transglutaminase (tTG) is a multifunctional enzyme that catalyzes peptide cross-linking and polyamination reactions, and also is a signal-transducing GTPase. tTG protein content and enzymatic activity are upregulated in the brain in Huntington's disease and in other neurological diseases and conditions. Since mouse models are currently being used to study the role of tTG in Huntington's disease and other neurodegenerative diseases, it is critical that the level of its expression in the mouse forebrain be determined.
View Article and Find Full Text PDFAltered chondrocyte differentiation, including development of chondrocyte hypertrophy, mediates osteoarthritis and pathologic articular cartilage matrix calcification. Similar changes in endochondral chondrocyte differentiation are essential for physiologic growth plate mineralization. In both articular and growth plate cartilages, chondrocyte hypertrophy is associated with up-regulated expression of certain protein-crosslinking enzymes (transglutaminases (TGs)) including the unique dual-functioning TG and GTPase TG2.
View Article and Find Full Text PDF