A library of degradable poly(2-alkyl-2-oxazoline) analogues (dPOx) with different length of the alkyl substituents was characterized in detail by gradient elution liquid chromatography. The hydrophobicity increased with increased side chain length as confirmed by a hydrophobicity row, established by reversed-phase liquid chromatography. Those dPOx were cytocompatible and formed colloidally stable nanoparticle (NP) formulations with positive zeta potential.
View Article and Find Full Text PDFApplication of redox-active polymers (RAPs) in redox flow batteries (RFBs) can potentially reduce the stack cost through substitution of costly ion-exchange membranes by cheap size-exclusion membranes. However, intermolecular interactions of polymer molecules, , entanglements, particularly in concentrated solutions, result in relatively high electrolyte viscosities. Furthermore, the large size and limited mobility of polymers lead to slow diffusion and more sluggish heterogeneous electron transfer rates compared to quickly diffusing small molecules.
View Article and Find Full Text PDFHypothesis: Host rock weathering and incipient pedogenesis result in the exposition of minerals, e.g., clay minerals in sedimentary limestones.
View Article and Find Full Text PDFHybrid nanoparticles (HNPs) were designed by combining a PLGA core with a lipid shell that incorporated PEG-Lipid conjugates with various functionalities (-RGD, -cRGD, -NH, and -COOH) to create targeted drug delivery systems. Loaded with a neutral lipid orange dye, the HNPs were extensively characterized using various techniques and investigated for their uptake in human monocyte-derived macrophages (MDMs) using FC and CLSM. Moreover, the best-performing HNPs (i.
View Article and Find Full Text PDFThe in-depth analytical characterization of polymers, in particular regarding intended biomedical applications, is becoming increasingly important to elucidate their structure-property relationships. Specifically, end group analysis of e.g.
View Article and Find Full Text PDFUnderstanding the polymorphism of lipids in solution is the key to the development of intracellular delivery systems. Here, we study the dynamics of poly(ethylene glycol)-lipid (PEG-Lipid) conjugates aiming at a better understanding of their molecular properties and aggregation behavior in solution. Those PEG-Lipids are used as components of lipid nanoparticles (LNPs).
View Article and Find Full Text PDFMultifunctional nanoparticle (NP) formulations for medical purposes have already found their way toward envisaged translation. A persistent challenge of those systems is, next to NP size analysis, the compositional analysis of the NPs with the polymer as the matrix component and the encapsulated drug, particularly in a quantitative manner. Herein, we report the formulation of poly(lactic--glycolic acid) (PLGA) NPs by nanoprecipitation and the analysis of their integrity and size by dynamic light scattering (DLS) and scanning electron microscopy (SEM).
View Article and Find Full Text PDFAll-aqueous, surfactant-free, and pH-driven nanoformulation methods to generate pH- and temperature-responsive polymer nanoparticles (NPs) are described. Copolymers comprising a poly(methyl methacrylate) (PMMA) backbone with a few units of 2-(dimethylamino)ethyl methacrylate (DMAEMA) are solubilized in acidic buffer (pH 2.0) to produce pH-sensitive NPs.
View Article and Find Full Text PDFInfluenza A viruses (IAV), including the pandemic 2009 (pdm09) H1N1 or avian influenza H5N1 virus, may advance into more pathogenic, potentially antiviral drug-resistant strains (including loss of susceptibility against oseltamivir). Such IAV strains fuel the risk of future global outbreaks, to which this study responds by re-engineering Interferon-α2a (IFN-α2a) bioconjugates into influenza therapeutics. Type-I interferons such as IFN-α2a play an essential role in influenza infection and may prevent serious disease courses.
View Article and Find Full Text PDFConjugation of poly(ethylene glycol) (PEG) to biologics is a successful strategy to favorably impact the pharmacokinetics and efficacy of the resulting bioconjugate. We compare bioconjugates synthesized by strain-promoted azide-alkyne cycloaddition (SPAAC) using PEG and linear polyglycerol (LPG) of about 20 kDa or 40 kDa, respectively, with an azido functionalized human Interferon-α2a (IFN-α2a) mutant. Site-specific PEGylation and LPGylation resulted in IFN-α2a bioconjugates with improved in vitro potency compared to commercial Pegasys.
View Article and Find Full Text PDFStrong directional hydrogen bonds represent a suitable supramolecular force to drive the one-dimensional (1D) aqueous self-assembly of polymeric amphiphiles resulting in cylindrical polymer brushes. However, our understanding of the kinetics in these assembly processes is still limited. We here demonstrate that the obtained morphologies for our recently reported benzene tris-urea and tris-peptide conjugates are strongly pathway-dependent.
View Article and Find Full Text PDFHydrodynamic and light scattering methods are urgently required for accurate characterization of nanoparticles (NPs) in the field of nanomedicine to unveil their sizes and distributions. A fundamental characterization approach in the field of nanomedicines is, next to standard batch dynamic light scattering (DLS) and increasingly more applied (asymmetrical flow) field-flow fractionation (FFF) coupled to multi-angle laser light scattering (MALLS), the utilization of an analytical ultracentrifuge (AUC). Here, we demonstrate the power of an AUC in comparison to batch DLS and FFF-MALLS to decipher, in detail, the size and dispersity of pharma-relevant, commercial and in-house prepared soft matter NPs, suitable for life science applications.
View Article and Find Full Text PDFLeukotrienes are pro-inflammatory lipid mediators generated by 5-lipoxygenase aided by the 5-lipoxygenase-activating protein (FLAP). BRP-201, a novel benzimidazole-based FLAP antagonist, inhibits leukotriene biosynthesis in isolated leukocytes. However, like other FLAP antagonists, BRP-201 fails to effectively suppress leukotriene formation in blood, which limits its therapeutic value.
View Article and Find Full Text PDFThe analytical ultracentrifuge (AUC) and the modern field of analytical ultracentrifugation found its inception approximately a century ago. We highlight the scope of its major experimental opportunities as a transport-based method, contemporary and up-and-coming investigation potential for polymers, polymer-drug conjugates, polymer assemblies, as well as medical nanoparticles. Special focus lies on molar mass estimates of unimeric polymeric species, self-assemblies in solution, and (co)localization of multicomponent systems in solution alongside the material-biofluid interactions.
View Article and Find Full Text PDFControlling the length of one-dimensional (1D) polymer nanostructures remains a key challenge on the way toward the applications of these structures. Here, we demonstrate that top-down processing facilitates a straightforward adjustment of the length of polyethylene oxide (PEO)-based supramolecular polymer bottlebrushes (SPBs) in aqueous solutions. These cylindrical structures self-assemble via directional hydrogen bonds formed by benzenetrisurea (BTU) or benzenetrispeptide (BTP) motifs located within the hydrophobic core of the fiber.
View Article and Find Full Text PDFStimuli-responsive block copolymer micelles can provide tailored properties for the efficient delivery of genetic material. In particular, temperature- and pH-responsive materials are of interest, since their physicochemical properties can be easily tailored to meet the requirements for successful gene delivery. Within this study, a stimuli-responsive micelle system for gene delivery was designed based on a diblock copolymer consisting of poly(,-diethylacrylamide) (PDEAm) as a temperature-responsive segment combined with poly(aminoethyl acrylamide) (PAEAm) as a pH-responsive, cationic segment.
View Article and Find Full Text PDFJaundice, the clinical hallmark of infection-associated liver dysfunction, reflects altered membrane organization of the canalicular pole of hepatocytes and portends poor outcomes. Mice lacking phosphoinositide 3-kinase-γ (PI3Kγ) are protected against membrane disintegration and hepatic excretory dysfunction. However, they exhibit a severe immune defect that hinders neutrophil recruitment to sites of infection.
View Article and Find Full Text PDFHydrophilic poly(2-oxazoline)s represent a promising alternative to replace poly(ethylene glycol) in the biomedical field. For that purpose, reliable analytical protocols to confirm identity and quantity of impurities are required. In particular, side products deriving from chain transfer reactions occurring during the cationic ring-opening polymerization and incomplete end-capping processes may be present.
View Article and Find Full Text PDFDye-loaded micelles of 10 nm diameter formed from amphiphilic graft copolymers composed of a hydrophobic poly(methyl methacrylate) backbone and hydrophilic poly(2-ethyl-2-oxazoline) side chains with a degree of polymerization of 15 were investigated concerning their cellular interaction and uptake as well as their interaction with local and circulating cells of the reticuloendothelial system in the liver by intravital microscopy. Despite the high molar mass of the individual macromolecules ( ≈ 20 kg mol), backbone end group modification by attachment of a hydrophilic anionic fluorescent probe strongly affected the performance. To understand these effects, the end group was additionally modified by the attachment of four methacrylic acid repeating units.
View Article and Find Full Text PDFBile colloids containing taurocholate and lecithin are essential for the solubilization of hydrophobic molecules including poorly water-soluble drugs such as Perphenazine. We detail the impact of Perphenazine concentrations on taurocholate/lecithin colloids using analytical ultracentrifugation, dynamic light scattering, small-angle neutron scattering, nuclear magnetic resonance spectroscopy, coarse-grained molecular dynamics simulations, and isothermal titration calorimetry. Perphenazine impacted colloidal molecular arrangement, structure, and binding thermodynamics in a concentration-dependent manner.
View Article and Find Full Text PDFThe assembly of supramolecular polymer bottlebrushes in aqueous systems is, in most cases, associated with a lateral aggregation of the supramolecular building blocks in addition to their axial stacking. Here, it is demonstrated that this limitation can be overcome by attaching three polymer chains to a central supramolecular unit that possesses a sufficiently high number of hydrogen bonding units to compensate for the increased steric strain. Therefore, a 1,3,5-benzenetrisurea-polyethylene oxide conjugate is modified with different peptide units located next to the urea groups which should facilitate self-assembly in water.
View Article and Find Full Text PDFCationic polymers are promising gene delivery vectors due to their ability to bind and protect genetic material. The introduction of hydrophobic moieties into cationic polymers can further improve the vector efficiency, but common formulations of hydrophobic polymers involve harsh conditions such as organic solvents, impairing intactness and loading efficiency of the genetic material. In this study, a mild, aqueous formulation method for the encapsulation of high amounts of genetic material is presented.
View Article and Find Full Text PDFBisindolylmaleimide I (BIM-I) is a competitive pan protein kinase C inhibitor with anti-inflammatory and anti-metastatic properties, suggested to treat inflammatory diseases and various cancer entities. However, despite its therapeutic potential, BIM-I has two major drawbacks, i.e.
View Article and Find Full Text PDFHypothesis: A prominent fraction of mobile organic matter in natural aqueous soil solutions is formed by molecules in sizes that seamlessly exceed the lower end of what is defined as a colloid. The hydrodynamics and the functional diversity of these molecules result in a transport behavior that is fundamentally different from smaller compounds. However, there is a lack of "reactive tracers" that allow for the study of colloidal transport phenomena appropriately.
View Article and Find Full Text PDFFrom the perspective of future translation, medical, biodegradable nanoparticles (NPs) have been investigated using an analytical ultracentrifuge in fluids of various complexity, including human serum, in the temperature range of 6 to 40 °C, and timescales relevant for a nanomedical targeting and clearance application. These studies provided salient insights into the integrity and degradation aspects of the NPs, imposed by varying solution environmental conditions. This was enabled by selective monitoring of the targeting dye moiety, cell-specifically directing the NPs to the desired location of interest, i.
View Article and Find Full Text PDF