The immune response to an allograft activates lymphocytes with the capacity to cause rejection. Activation of CD4CD25Foxp3T regulatory cells (Treg) can down-regulate allograft rejection and can induce immune tolerance to the allograft. Treg represent <10% of peripheral CD4T cells and do not markedly increase in tolerant hosts.
View Article and Find Full Text PDFThe quest to understand how allogeneic transplanted tissue is not rejected and how tolerance is induced led to fundamental concepts in immunology. First, we review the research that led to the Clonal Deletion theory in the late 1950s that has since dominated the field of immunology and transplantation. At that time many basic mechanisms of immune response were unknown, including the role of lymphocytes and T cells in rejection.
View Article and Find Full Text PDFCD4CD25Foxp3T cell population is heterogenous and contains three major sub-groups. First, thymus derived T regulatory cells (tTreg) that are naïve/resting. Second, activated/memory Treg that are produced by activation of tTreg by antigen and cytokines.
View Article and Find Full Text PDFResting and activated subpopulations of CD4CD25CD127T regulatory cells (Treg) and CD4CD25CD127 effector T cells in MS patients and in healthy individuals were compared. Peripheral blood mononuclear cells isolated using Ficoll Hypaque were stained with monoclonal antibodies and analysed by flow cytometer. CD45RA and Foxp3 expression within CD4 cells and in CD4CD25CD127T cells identified Population I; CD45RAFoxp3, Population II; CD45RAFoxp3 and Population III; CD45RAFoxp3 cells.
View Article and Find Full Text PDFExperimental autoimmune neuritis (EAN) induced by peripheral nerve myelin (PNM) is self-limiting and re-immunization with PNM does not re-activate disease. This study showed inhibition of EAN by CD4CD25T cells both from sensitized hosts or from naïve hosts after ex-vivo activation by PNM and rIL-2. Transfer of naïve CD4CD25T cells has no effect on EAN, nor did naïve CD4CD25T cells activated with rIL-2 and renal tubular antigen.
View Article and Find Full Text PDFTherapy with alloantigen-specific CD4CD25 T regulatory cells (Treg) for induction of transplant tolerance is desirable, as naïve thymic Treg (tTreg) are not alloantigen-specific and are weak suppressor cells. Naïve tTreg from DA rats cultured with fully allogeneic PVG stimulator cells in the presence of rIL-2 express IFN-gamma receptor (IFNGR) and IL-12 receptor beta2 (IL-12Rβ2) and are more potent alloantigen-specific regulators that we call Ts1 cells. This study examined additional markers that could identify the activated alloantigen-specific Treg as a subpopulation within the CD4CD25Foxp3Treg.
View Article and Find Full Text PDFObjective: To examine if the protective effect of parasite infection on experimental autoimmune encephalomyelitis (EAE) was due to interleukin (IL)-5, a cytokine produced by a type-2 response that induces eosinophilia. We hypothesize that, in parasite infections, IL-5 also promotes expansion of antigen-specific T regulatory cells that control autoimmunity.
Methods: larvae were used to infect Lewis rats prior to induction of EAE by myelin basic protein.
Transplant tolerance induced in adult animals is mediated by alloantigen-specific CD4CD25 T cells, yet in many models, proliferation of CD4 T cells from hosts tolerant to specific-alloantigen is not impaired. To identify changes that may diagnose tolerance, changes in the patterns of proliferation of CD4, CD4CD25, and CD4CD25 T cells from DA rats tolerant to Piebald Virol Glaxo rat strain (PVG) cardiac allografts and from naïve DA rats were examined. Proliferation of CD4 T cells from both naïve and tolerant hosts was similar to both PVG and Lewis stimulator cells.
View Article and Find Full Text PDFCD4T cells mediate antigen-specific allograft tolerance, but die in culture without activated lymphocyte derived cytokines. Supplementation of the media with cytokine rich supernatant, from ConA activated spleen cells, preserves the capacity of tolerant cells to transfer tolerance and suppress rejection. rIL-2 or rIL-4 alone are insufficient to maintain these cells, however.
View Article and Find Full Text PDFCD83 is a member of the Ig gene superfamily, first identified in activated lymphocytes. Since then, CD83 has become an important marker for defining activated human dendritic cells (DC). Several potential CD83 mRNA isoforms have been described, including a soluble form detected in human serum, which may have an immunosuppressive function.
View Article and Find Full Text PDFThere are numerous transcriptional, proteomic and functional differences between monocyte-derived dendritic cells (Mo-DC) and primary blood dendritic cells (BDC). The CMRF-56 monoclonal antibody (mAb) recognizes a cell surface marker, which is upregulated on BDC following overnight culture. Given its unique ability to select a heterogeneous population of BDC, we engineered a human chimeric (h)CMRF-56 IgG4 mAb to isolate primary BDC for potential therapeutic vaccination.
View Article and Find Full Text PDFIn rat models, CD4(+)CD25(+) T regulatory cells (Treg) play a key role in the induction and maintenance of antigen-specific transplant tolerance, especially in DA rats with PVG cardiac allografts (1, 2). We have previously described generation of alloantigen-specific Treg (Ts1), by culture of naïve natural CD4(+)CD25(+) Treg (nTreg) with specific alloantigen and IL-2 for 4 days. These cells express mRNA for IFN-γ receptor (ifngr) and suppress donor but not third party cardiac allograft rejection mediated by alloreactive CD4(+) T cells at ratios of <1:10.
View Article and Find Full Text PDFIL-4 is thought to promote induction of transplantation tolerance and alloantigen-specific CD4(+)CD25(+) T regulatory cells (Treg). This study examined the effect of IL-4 on the induction and maintenance of the CD4(+) T regulatory cells (Treg) that mediate transplantation tolerance. Tolerance was induced in DA rats with PVG heterotopic cardiac allografts by a short course of cyclosporine.
View Article and Find Full Text PDFAntigen specific T regulatory cells (Treg) are often CD4(+)CD25(+)FoxP3(+) T cells, with a phenotype similar to natural Treg (nTreg). It is assumed that nTreg cannot develop into an antigen specific Treg as repeated culture with IL-2 and a specific antigen does not increase the capacity or potency of nTreg to promote immune tolerance or suppress in vitro. This has led to an assumption that antigen specific Treg mainly develop from CD4(+)CD25(-)FoxP3(-) T cells, by activation with antigen and TGF-β in the absence of inflammatory cytokines such as IL-6 and IL-1β.
View Article and Find Full Text PDFImmune responses to foreign and self-Ags can be controlled by regulatory T cells (Tregs) expressing CD4 and IL-2Rα chain (CD25). Defects in Tregs lead to autoimmunity, whereas induction of Ag-specific CD4+CD25+ Tregs restores tolerance. Ag-specific CD4+CD25+ FOXP3+Tregs activated by the T helper type 2 (Th2) cytokine, IL-4, and specific alloantigen promote allograft tolerance.
View Article and Find Full Text PDFEffector T cells have functional subpopulations with distinct cytokine, cytokine receptor, chemokine receptor and transcription factors. We review how activation of antigen specific Treg induces expression of cytokines, cytokine receptors and chemokine receptors depending upon the effector lineage they are activated by. Activated Treg express receptors that are directly related to the effector T cell lineage.
View Article and Find Full Text PDFPurpose: Stemming from its inherent heterogeneity, single-agent treatments are essentially ineffective against castration-resistant prostate cancer (CRPC). Thus, clinically relevant regimens that harness different modalities to maximize treatment efficacy without increasing cumulative toxicities are urgently needed. Based on this rationale, we investigated whether a novel combination of purine nucleoside phosphorylase-mediated, gene-directed enzyme-prodrug therapy (PNP-GDEPT) with docetaxel against CRPC has superior efficacy in comparison with individual treatments.
View Article and Find Full Text PDFAntibody deposition and complement activation, especially membrane attack complex (MAC) formation are considered central for immune mediated demyelination. To examine the role of MAC in immune mediated demyelination, we studied experimental allergic neuritis (EAN) in Lewis rats deficient in complement component 6 (C6) that cannot form MAC. A C6 deficient Lewis (Lewis/C6-) strain of rats was bred by backcrossing the defective C6 gene, from PVG/C6- rats, onto the Lewis background.
View Article and Find Full Text PDFCD4(+)CD25(+)Foxp3(+) T cells are regulatory/suppressor cells (Tregs) that include non-antigen (Ag)-specific as well as Ag-specific Tregs. How non-Ag-specific naive CD4(+)CD25(+) Treg develop into specific Tregs is unknown. Here, we generated adaptive Tregs by culture of naive CD4(+)CD25(+)Foxp3(+) T cells with allo-Ag and either interleukin-2 (IL-2) or IL-4.
View Article and Find Full Text PDFBackground: Naïve CD4+CD25+T cells suppress immune responses in a non-antigen specific manner. The effects of naïve CD4+CD25+T cells in suppressing alloimmune responses as assayed in the mixed lymphocyte culture (MLC) is poorly understood.
Method: The alloreactivity of naïve CD4+CD25+, CD4+CD25(-) and unfractionated CD4+T cells from DA rats was compared in MLC with MHC incompatible stimulator cells.
Background: The mechanisms by which CD4+T cells, especially CD4+ CD25+T cells, transfer allograft specific tolerance are poorly defined. The role of cytokines and the effect on antigen-presenting cells is not resolved.
Methods: Anti-CD3 monoclonal antibody (mAb) therapy induced tolerance to PVG heterotopic cardiac transplantation in DA rats.