Herein, we develop a hierarchically mesoporous cerium metal-organic framework (Ce-HMMOF) nanozyme with enhanced ALP-mimicking activity for the naked-eye detection of phosphorylated biomarkers. The long-range ordered mesochannels (9.18 nm) throughout the Ce-HMMOF promote both the mass transfer and the accessibility of interior active sites, permitting the rapid and sensitive sensing of phosphorylated biomarkers through ALP-like biocatalysis.
View Article and Find Full Text PDFNanozymes are of particular interest due to their enzyme-mimicking activity and high stability that are favorable in biomedical sensing and immunoassays. In this work, we report a highly specific N-doped nanozyme through pyrolysis of framework-confined bovine serum albumin (BSA). This strategy allows one to translate the low-cost and featureless BSA into a highly active enzyme mimic.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) have become a promising accommodation for enzyme immobilization and protection. However, the integration of multienzymes into MOFs may result in compromise of individual enzymatic activity. In this work, we report an iron mineralization strategy to facilely construct a mesoporous MOF, possessing excellent peroxidase-mimic bioactivity.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) with attractive properties such as high surface area, tunable porosity, designable functionality and excellent stability, have aroused great interest from researchers as the matrices for enzyme immobilization. Recently, several efficient strategies including surface immobilization, post-synthetic infiltration and in situ encapsulation have been explored. MOF-immobilized enzymes, named enzymes@MOFs, show remarkably enhanced stability and recyclability, accelerating cell-free biocatalysis in diverse applications.
View Article and Find Full Text PDFThe determination of endogenous substances is of great significance for obtaining important biotic information such as biological components, metabolic pathways and disease biomarkers in different living organisms (e.g. plants, insects, animals and humans).
View Article and Find Full Text PDFHerein, a robust and homogeneous porous poly(3,4-ethylenedioxythiophene)/graphene (PEDOT/graphene) thin film surface-assisted laser desorption/ionization (SALDI) functional platform was prepared through a rapid and facile in-situ photopolymerization method. The graphene-embedded PEDOT skeleton well circumvented the aggregation-related problems in the traditional carbon-based SALDI method which combined with time-of-flight mass spectrometer (TOF MS). As a result, the reproducibility and quantitative capacity of the SALDI platform were significantly improved.
View Article and Find Full Text PDF