Environ Res
January 2025
The rapid expansion of the biodiesel industry has substantially increased crude glycerol residue (CG) production, creating sustainability and economic challenges due to surplus glycerol generation. Conventional purification methods are costly and environmentally demanding, necessitating innovative strategies to utilize this residue effectively. This study innovates by exploring the microwave-assisted synthesis of carbon dots (CDs) from CG, exemplifying a shift toward sustainable biodiesel production by transforming the residue into a multifunctional material.
View Article and Find Full Text PDFEarly diagnosis of cancer is crucial for therapeutic methods to be more effective and to decrease the mortality rate due to this disease. Current diagnostic methods include imaging techniques that require expensive equipment and specialized personnel, making it difficult to apply them to many patients. To overcome these limitations, many biosensors have been developed to monitor cancer biomarkers.
View Article and Find Full Text PDFThe development of novel high-sensitivity DNA-based biosensors is beneficial, as these devices have applications in the identification of genetic risk factors, medical diagnostics, and environmental monitoring. Herein, we report on the first robust device capable of detecting DNA on a microliter drop with a zepto-molar (10) concentration. To accomplish this, we engineered an electrical-electrochemical vertical device (EEVD) that comprises a novel drain and source terminal in a short-circuited configuration, paired with an ideal non-polarizable reference electrode.
View Article and Find Full Text PDFFolate receptor alpha (FR-α) is a glycoprotein overexpressed in tumor cell surfaces, especially in gynecologic cancers, and can be used as a biomarker for diagnostics. Currently, FRα is quantified by positron emission tomography (PET) or fluorescence imaging techniques. However, these methods are costly and time-consuming.
View Article and Find Full Text PDFIn this study, platinum electrodes were fabricated on the bio-based poly(ethylene terephthalate) (Bio-PET) substrates for the development of flexible electrochemical sensors for the detection of Parkinson's disease biomarkers. Dopamine was detected by voltammetric measurements, displaying a 3.5 × 10 mol L to 8.
View Article and Find Full Text PDFThe detection and quantification of neurotransmitter acetylcholine (ACh) are relevant because modifications in the ACh levels constitute a threat to human health. The biological regulator of this neurotransmitter is acetylcholinesterase (AChE), an enzyme that catalyzes the hydrolysis of ACh to choline and acetic acid. However, its activity is inhibited in the presence of organophosphate and carbamate pesticides, compromising the degradation of the neurotransmitter.
View Article and Find Full Text PDFNonstructural protein 1 (NS1) is secreted by dengue virus in the first days of infection and acts as an excellent dengue biomarker. Here, the direct electrical detection of NS1 from dengue type 2 virus has been achieved by the measurement of variations in open circuit potential (OCP) between a reference electrode and a disposable Au electrode containing immobilized anti-NS1 antibodies acting as immunosensor. Egg yolk immunoglobulin (IgY) was utilized for the first time as the biological recognition element alternatively to conventional mammalian antibodies in the detection of dengue virus NS1 protein.
View Article and Find Full Text PDFThis paper reports on the use of the crude extract of avocado (CEA) fruit (Persea americana) as a source of tyrosinase enzyme. CEA was immobilized via layer by layer (LbL) technique onto indium tin oxide (ITO) substrates and applied in the detection of monophenol using a potentiometric biosensor. Poly(propylene imine) dendrimer of generation 3 (PPI-G3) was used as a counter ion in the layer by layer process due to its highly porous structure and functional groups suitable for enzyme linkage.
View Article and Find Full Text PDFSeparative extended gate field effect transistor (SEGFET) type devices have been used as an ion sensor or biosensor as an alternative to traditional ion sensitive field effect transistors (ISFETs) due to their robustness, ease of fabrication, low cost and possibility of FET isolation from the chemical environment. The layer-by-layer technique allows the combination of different materials with suitable properties for enzyme immobilization on simple platforms such as the extended gate of SEGFET devices enabling the fabrication of biosensors. Here, glucose biosensors based on dendrimers and metallophthalocyanines (MPcs) in the form of layer-by-layer (LbL) films, assembled on indium tin oxide (ITO) as separative extended gate material, has been produced.
View Article and Find Full Text PDF