Recentstudies toward finding more efficient ruthenium metalloligands for photocatalysis applications have shown that the derivatives of the linear [Ru(dqp)] (dqp: 2,6-di(quinolin-8-yl)-pyridine) complexes hold significant promise due to their extended emission lifetime in the μs time scale while retaining comparable redox potential, extinction coefficients, and absorption profile in the visible region to [Ru(bpy)] (bpy: 2,2'-bipyridine) and [Ru(tpy)] (tpy: 2,2':6',2″-terpyridine) complexes. Nevertheless, its photostability in aqueous solution needs to be improved for its widespread use in photocatalysis. Carbon-based supports have arisen as potential solutions for improving photostability and photocatalytic activity, yet their effect greatly depends on the interaction of the metal complex with the support.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
February 2024
Hypothesis: The antidepressant drug imipramine, and its metabolite desipramine show different extents of interaction with, and passive permeation through, cellular membrane models, with the effects depending on the membrane composition. Through multimodal interrogation, we can observe that the drugs have a direct impact on the physicochemical properties of the membrane, that may play a role in their pharmacokinetics.
Experiments: Microcavity pore-suspended lipid bilayers (MSLBs) of four different compositions, each with a different headgroup charge namely; zwitterionic dioleoylphosphatidylcholine (DOPC), mixed DOPC and negatively charged dioleoylphosphatidylglycerol (DOPG) (3:1), mixed DOPC and positively charged dioleoyltrimethylammoniumpropane (DOTAP) (3:1), and with increasing complex composition mimicking blood-brain-barrier (BBB) were prepared on gold and polydimethylsiloxane (PDMS) substrates using a Langmuir-Blodgett-vesicle fusion method.
Antimicrobial peptides (AMPs) offer significant hope in the fight against antibiotic resistance. Operating via a mechanism different from that of antibiotics, they target the microbial membrane and ideally should damage it without impacting mammalian cells. Here, the interactions of two AMPs, magainin 2 and PGLa, and their synergistic effects on bacterial and mammalian membrane models were studied using electrochemical impedance spectroscopy, atomic force microscopy (AFM), and fluorescence correlation spectroscopy.
View Article and Find Full Text PDFGalectin-3 (Gal3) is a β-galactoside binding lectin that mediates many physiological functions, including the binding of cells to the extracellular matrix for which the glycoprotein αβ integrin is of critical importance. The mechanisms by which Gal3 interacts with membranes have not been widely explored to date due to the complexity of cell membranes and the difficulty of integrin reconstitution within model membranes. Herein, to study their interaction, Gal3 and αβ were purified, and the latter reconstituted into pore-suspended lipid bilayers comprised eggPC:eggPA.
View Article and Find Full Text PDFAmyloid-beta (Aβ) aggregation triggers neurotoxicity and is linked to Alzheimer's disease. Aβ oligomers, rather than extended fibrils, adhere to the cell membrane, causing cell death. Phosphatidylserine (PS), an anionic phospholipid, is prevalent in neuronal membranes (< 20 molar percentage) and, while isolated to the cytoplasmic leaflet of the membrane in healthy cells, its exposure in apoptotic cells and migration to exoplasmic leaflet is triggered by oxidative damage to the membrane.
View Article and Find Full Text PDFSeasonal periodic pandemics and epidemics caused by Influenza A viruses (IAVs) are associated with high morbidity and mortality worldwide. They are frequent and unpredictable in severity so there is a need for biophysical platforms that can be used to provide both mechanistic insights into influenza virulence and its potential treatment by anti-IAV agents. Host membrane viral association through the glycoprotein hemagglutinin (HA) of IAVs is one of the primary steps in infection.
View Article and Find Full Text PDFQuinacrine is a versatile drug that is widely recognized for its antimalarial action through its inhibition of the phospholipase enzyme. It also has antianthelmintic and antiprotozoan activities and is a strong DNA binder that may be used to combat multidrug resistance in cancer. Despite extensive cell-based studies, a detailed understanding of quinacrine's influence on the cell membrane, including permeability, binding, and rearrangement at the molecular level, is lacking.
View Article and Find Full Text PDFThe binding of influenza receptor (HA1) to membranes containing different glycosphingolipid receptors was investigated at Microcavity Supported Lipid Bilayers (MSLBs). We observed that HA1 preferentially binds to GD1a but the diffusion coefficient of the associated complex at lipid bilayer is approximately double that of the complexes formed by HA1 GM1 or GM3.
View Article and Find Full Text PDFA pyrene charge transfer fluorophore with three ionizable N,N-dimethylaniline moieities was explored as an interfacial pH switch. The parent carboxylate compound and the thiolated derivative were shown by spectroscopy combined with DFT calculation to be successively and reversibly protonated. Protonation leads to progressive decrease of intensity of the 550 nm centered N,N-dimethylaniline to pyrene charge transfer emission which on protonation of the third site, leads to extinction of this transition and evolution of an intense blue (450 nm) pyrene-centered emission.
View Article and Find Full Text PDFMicrocavity-supported lipid bilayers (MSLBs) are contact-free membranes suspended across aqueous-filled pores that maintain the lipid bilayer in a highly fluidic state, free from frictional interactions with substrate. Such platforms offer the prospect of liposome-like fluidity with the compositional versatility and addressability of supported lipid bilayers and thus offer a significant opportunity to model membrane asymmetry, protein-membrane interactions, and aggregation at the membrane interface. Herein we evaluate their performance by studying the effect of transmembrane lipid asymmetry on lipid diffusivity, membrane viscosity, and cholera toxin-ganglioside recognition across six symmetric and asymmetric membranes including binary compositions containing both fluid and gel phases, and ternary phase-separated membrane compositions.
View Article and Find Full Text PDFMany drugs have intracellular or membrane-associated targets, thus understanding their interaction with the cell membrane is of value in drug development. Cell-free tools used to predict membrane interactions should replicate the molecular organization of the membrane. Microcavity array-supported lipid bilayer (MSLB) platforms are versatile biophysical models of the cell membrane that combine liposome-like membrane fluidity with stability and addressability.
View Article and Find Full Text PDFMacromolecules of amphiphilic invertible polymers (AIPs) are capable of self-assembly into micellar assemblies of various morphologies in solvents of different polarities. The micellar assemblies in aqueous media are capable of encapsulating poorly aqueous soluble cargo and can undergo inverse conformational change and cargo release in contact with non-polar media, including potentially, cell membranes. Thus, invertible micellar assemblies have significant potential in drug delivery and related domains.
View Article and Find Full Text PDFRaft-like functional domains with putative sizes of 20-200 nm and which are evolving dynamically are believed to be the most crucial regions in cellular membranes which determine cell signaling and various functions of cells. While the actual sizes of these domains are believed to vary from cell to cell no direct determination of their sizes and their evolution when cells interact with external agents like toxins and relevant biomolecules exists. Here, we report the first direct determination of the size of these nanoscale regions in model raft-forming biomembranes using the method of super-resolution stimulated emission depletion nanoscopy coupled with fluorescence correlation spectroscopy (STED-FCS).
View Article and Find Full Text PDFDynamic heterogeneity (DH) at nanoscale due to lipid-lipid and/or lipid-protein interactions in cell membranes plays a crucial role in determining a broad range of important cell functions. In cell membranes, the dimensions of these nanodomains have been postulated to be in the order of 10's of nm and transient in nature. While the structural features of membranes have been studied in detail, little is known about their dynamical characteristics due to paucity of techniques which can probe nanoscale phenomena with simultaneous high temporal resolution.
View Article and Find Full Text PDFNature is known to engineer complex compositional and dynamical platforms in biological membranes. Understanding this complex landscape requires techniques to simultaneously detect membrane re-organization and dynamics at the nanoscale. Using super-resolution stimulated emission depletion (STED) microscopy coupled with fluorescence correlation spectroscopy (FCS), we reveal direct experimental evidence of dynamic heterogeneity at the nanoscale in binary phospholipid-cholesterol bilayers.
View Article and Find Full Text PDFInterfacial hydrolysis of oxanorbornane-based amphiphile (Triol C16) by Candida rugosa lipase was investigated using real-time polarized Fourier transform-infrared reflection absorption spectroscopy (FT-IRRAS). The kinetics of hydrolysis was studied by analyzing the ester carbonyl ν(CO) stretching vibration band across the two dimensional (2D) array of molecules at the confined interface. In particular, we demonstrate Triol C16 to form Michaelis-Menten type complex, like that of lipid-substrate analogues, where the Triol C16 head group remained accessible to the catalytic triad of the lipase.
View Article and Find Full Text PDFCell membranes are believed to be highly complex dynamical systems having compositional heterogeneity involving several types of lipids and proteins as the major constituents. This dynamical and compositional heterogeneity is suggested to be critical to the maintenance of active functionality and response to chemical, mechanical, electrical and thermal stresses. However, delineating the various factors responsible for the spatio-temporal response of actual cell membranes to stresses can be quite challenging.
View Article and Find Full Text PDFMembrane-protein interactions play a central role in membrane mediated cellular processes ranging from signaling, budding, and fusion, to transport across the cell membrane. Of particular significance is the process of efficient protein olgomerization and transmembrane pore formation on the membrane surface; the primary virulent pathway for the action of antimicrobial peptides and pore forming toxins (PFTs). The suggested nanoscopic length scales and dynamic nature of such membrane lipid-protein interactions makes their detection extremely challenging.
View Article and Find Full Text PDFPreferential and enantioselective interactions of L-/D-Phenylalanine (L-Phe and D-Phe) and butoxycarbonyl-protected L-/D-Phenylalanine (LPA and DPA) as guest with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (L-DPPC) as host were tapped by using real time Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS). Polarization-modulated FT-IRRAS of DPPC monolayers above the phenylalanine modified subphases depicted fine structure/conformation differences under considerations of controlled 2D surface pressure. Selective molecular recognition of D-enantiomer over L-enantiomer driven by the DPPC head group via H-bonding and electrostatic interactions was evident spectroscopically.
View Article and Find Full Text PDFPhotothermal therapy using (Near Infrared) NIR region of EM spectrum is a fast emerging technology for cancer therapy. Different types of nanoparticles may be used for enhancing the treatment. Though the treatment protocols are developed based on experience driven estimated temperature increase in the tissue, it is not really known what spatiotemporal thermal behavior in the tissue is.
View Article and Find Full Text PDFSoft molecular ellipsoids conceived from 3,4-di(dodecyloxy)benzoic acid (DDBA) amphiphile draw attention to monomer structure design, intramolecular -COOH headgroup twist (ϕ°) and cyclic-acyclic dimer switching through facial H-bond torsion (ψ°). Generically, precipitation in hydrogen bonded systems has been the prime phenomenon once the critical aggregation concentrations were reached in the bulk solution. DDBA was no exception to this generalization.
View Article and Find Full Text PDFMolecular orientation-dependent electron transport across supported 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayers (SLBs) on semiconducting indium tin oxide (ITO) is reported with an aim towards potential nanobiotechnological applications. A bifunctional strategy is adopted to form symmetric and asymmetric bilayers of DPPC that interact with L-tryptophan, and are analyzed by surface manometry and atomic force microscopy. Polarization-dependent real-time Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS) analysis of these SLBs reveals electrostatic, hydrogen-bonding, and cation-π interactions between the polar head groups of the lipid and the indole side chains.
View Article and Find Full Text PDFA molecular understanding on the preferential and selective interactions of L-tryptophan, a major component of surfactant proteins, with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) is important in the metabolic cycle of the pulmonary surfactant. In view of this, interfacial signals of interest in real time were tapped with aligned DPPC monolayers over a physiological tryptophan subphase using extremely surface sensitive 2D vibrational spectroscopy. Polarization-modulated and angle dependent Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS) of DPPC monolayers on water and L-tryptophan subphases depicted fine structure/conformation differences in the interaction modes, evidenced from changes in the vibrational band intensities and frequencies under conditions of controlled 2D surface pressure.
View Article and Find Full Text PDF