Objectives: Secondary peritonitis is caused by infection of the peritoneal cavity due to perforation of the alimentary tract. Mannheim's peritonitis ındex (MPI) is a prognostic scoring system that predicts outcomes in peritonitis. Increasing MPI scores correlate with poor outcomes and mortality.
View Article and Find Full Text PDFThe presence of ERG gene fusion; from developing prostatic intraepithelial neoplasia (PIN) lesions to hormone resistant high grade prostate cancer (PCa) dictates disease progression, altered androgen metabolism, proliferation and metastasis. ERG driven transcriptional landscape may provide pro-tumorigenic cues in overcoming various strains like hypoxia, nutrient deprivation, inflammation and oxidative stress. However, insights on the androgen independent regulation and function of ERG during stress are limited.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is notoriously difficult to treat due to its aggressive, ever resilient nature. A major drawback lies in its tumor grade; a phenomenon observed across various carcinomas, where highly differentiated and undifferentiated tumor grades, termed as low and high grade respectively, are found in the same tumor. One eminent problem due to such heterogeneity is drug resistance in PDAC.
View Article and Find Full Text PDFEwing sarcoma (EWS) is a soft tissue and bone tumor that occurs primarily in adolescents and young adults. In most cases of EWS, the chimeric transcription factor, EWS-FLI1 is the primary oncogenic driver. The epigenome of EWS cells reflects EWS-FLI1 binding and activation or repression of transcription.
View Article and Find Full Text PDFAlveolar rhabdomyosarcoma is a life-threatening myogenic cancer of children and adolescent young adults, driven primarily by the chimeric transcription factor PAX3-FOXO1. The mechanisms by which PAX3-FOXO1 dysregulates chromatin are unknown. We find PAX3-FOXO1 reprograms the -regulatory landscape by inducing super enhancers.
View Article and Find Full Text PDFEwing sarcoma cells depend on the EWS-FLI1 fusion transcription factor for cell survival. Using an assay of EWS-FLI1 activity and genome-wide RNAi screening, we have identified proteins required for the processing of the EWS-FLI1 pre-mRNA. We show that Ewing sarcoma cells harboring a genomic breakpoint that retains exon 8 of EWSR1 require the RNA-binding protein HNRNPH1 to express in-frame EWS-FLI1.
View Article and Find Full Text PDFThe MTA1 protein contributes to the process of cancer progression and metastasis through multiple genes and protein targets and interacting proteins with roles in transformation, anchorage-independent growth, invasion, survival, DNA repair, angiogenesis, hormone independence, metastasis, and therapeutic resistance. Because the roles and clinical significance of MTA proteins in human cancer are discussed by other contributors in this issue, this review will focus on our current understanding of the underlying principles of action behind the biological effects of MTA1. MTA proteins control a spectrum of cancer-promoting processes by modulating the expression of target genes and/or the activity of MTA-interacting proteins.
View Article and Find Full Text PDFAlthough the functional significance of the metastasic tumor antigen (MTA) family of chromatin remodeling proteins in the pathobiology of cancer is fairly well recognized, the physiological role of MTA proteins continues to be an understudied research area and is just beginning to be recognized. Similar to cancer cells, MTA1 also modulates the expression of target genes in normal cells either by acting as a corepressor or coactivator. In addition, physiological functions of MTA proteins are likely to be influenced by its differential expression, subcellular localization, and regulation by upstream modulators and extracellular signals.
View Article and Find Full Text PDFDespite being one of the most well-studied transcription factors, the temporal regulation of p53-mediated transcription is not very well understood. Recent data suggest that target specificity of p53-mediated transactivation is achieved by posttranslational modifications of p53. K120 acetylation is a modification critical for recruitment of p53 to proapoptotic targets.
View Article and Find Full Text PDFMetabolic reprogramming is an integral part of tumorigenesis. Tumor suppressor p53 is a well studied transcription factor intimately linked with the control of cell cycle progression and apoptosis. Here, we discuss the emerging role of p53 in the transcriptional regulation of metabolism.
View Article and Find Full Text PDFMetabolic stress results in p53 activation, which can trigger cell-cycle arrest, ROS clearance, or apoptosis. However, what determines the p53-mediated cell fate decision upon metabolic stress is not very well understood. We show here that PGC-1α binds to p53 and modulates its transactivation function, resulting in preferential transactivation of proarrest and metabolic target genes.
View Article and Find Full Text PDF