Publications by authors named "Nirmalya Moitra"

The coordination replication technique is employed for the direct conversion of a macro- and mesoporous Cu(OH)-polyacrylamide composite to three-dimensional superstructures consisting of the flexible porous coordination polymers, Cu(bdc)(MeOH) and Cu(bdc)(bpy) (bdc = 1,4-benzenedicarboxylate, bpy = 4,4'-bipyridine). Detailed characterization of the replicated systems reveals that the structuralization plays an important role in determining the adsorptive properties of the replicated systems, and that the immobilization of the crystals within a higher-order architecture also affects its structural and dynamic properties. The polyacrylamide polymer is also found to be crucial for maintaining the structuralization of the monolithic systems, and in providing the mechanical robustness required for manual handling.

View Article and Find Full Text PDF

The optimization of a porous structure to ensure good separation performances is always a significant issue in high-performance liquid chromatography column design. Recently we reported the homogeneous embedment of Ag nanoparticles in periodic mesoporous silica monolith and the application of such Ag nanoparticles embedded silica monolith for the high-performance liquid chromatography separation of polyaromatic hydrocarbons. However, the separation performance remains to be improved and the retention mechanism as compared with the Ag ion high-performance liquid chromatography technique still needs to be clarified.

View Article and Find Full Text PDF

The synthesis of highly crystalline macro-meso-microporous monolithic Cu3(btc)2 (HKUST-1; btc(3-) = benzene-1,3,5-tricarboxylate) is demonstrated by direct conversion of Cu(OH)2-based monoliths while preserving the characteristic macroporous structure. The high mechanical strength of the monoliths is promising for possible applications to continuous flow reactors.

View Article and Find Full Text PDF

Inspired by homogeneous borane catalysts that promote Si-H bond activation, we herein describe an innovative method for surface modification of silica using hydrosilanes as the modification precursor and tris(pentafluorophenyl)borane (B(C6F5)3) as the catalyst. Since the surface modification reaction between surface silanol and hydrosilane is dehydrogenative, progress and termination of the reaction can easily be confirmed by the naked eye. This new metal-free process can be performed at room temperature and requires less than 5 min to complete.

View Article and Find Full Text PDF

Synthesis of class II hybrid silica materials requires the formation of covalent linkage between organic moieties and inorganic frameworks. The requirement that organosilylating agents be present to provide the organic part limits the synthesis of functional inorganic oxides, however, due to the water sensitivity and challenges concerning purification of the silylating agents. Synthesis of hybrid materials with stable molecules such as simple alcohols, rather than with these difficult silylating agents, may therefore provide a path to unprecedented functionality.

View Article and Find Full Text PDF

The derivatization of functional organic fragments with triethoxysilyl groups to afford hydrolyzable organosilanes with targeted properties using the copper-catalyzed alkyne azide cycloaddition reaction under strictly anhydrous conditions is described according to two approaches, starting from five silylated substrates. This high yield, fast, and selective method is applicable to a wide range of substrates and is expected to lead to important achievements in the field of functional hybrid silica.

View Article and Find Full Text PDF

The CuAAC-'click' reaction under anhydrous conditions is reported as a new tool for the preparation of moisture-sensitive triethoxysilyl compounds that are obtained in 5 minutes in excellent yield with simple purification.

View Article and Find Full Text PDF