Publications by authors named "Nirmalendu Saha"

The air-breathing magur catfish (Clarias magur) are frequently challenged with high environmental pollutants, including that of various metal nanoparticles (NPs) in their natural habitats. Heat shock proteins (HSPs) are essential molecular chaperones for preserving intracellular protein homeostasis in eukaryotic cells. In aquatic animals, HSPs are known to play important defensive roles associated with various environmental stress-related cellular damages.

View Article and Find Full Text PDF

The glutathione (GSH) and thioredoxin (Trx) systems regulate cellular redox homeostasis and maintain antioxidant defense in most eukaryotes. We earlier reported the absence of gene coding for the glutathione reductase (GR) enzyme of the GSH system in the facultative air-breathing catfish, Clarias magur. Here, we identified three thioredoxin reductase (TrxR) genes, one of which was later confirmed as a thioredoxin glutathione reductase (TGR).

View Article and Find Full Text PDF

The stinging catfish Heteropneustes fossilis is a champion survivor under hypertonic stress and is suggested to be a profitable candidate for culture in slightly saline water in coastal regions. Fish gills are an essential site of osmoregulation and other physiological processes. To investigate the stress responses and mechanisms of salinity tolerance in stinging catfish, we sampled gills tissues from control and hypertonicity (100 mM NaCl solution) treated adult catfish and assessed for transcriptomic profiling by high throughput sequencing.

View Article and Find Full Text PDF

Aquaporins (AQPs) are a superfamily of transmembrane channel proteins that are responsible for the transport of water and some other molecules to and from the cell, mainly for osmoregulation under anisotonicity. We investigated here the expression patterns of different AQP isoforms and also during exposure to hypertonicity (300 mOsmol/L) for 48 h in juvenile stages of air-breathing stinging catfish (Heteropneustes fossilis). A total of 8 mRNA transcripts for different isoforms of AQPs and their translated proteins could be detected in the anterior and posterior regions of S1, S2, and S3 stages of juveniles of stinging catfish at variable levels.

View Article and Find Full Text PDF

Background: The small non-coding microRNAs play a vital role in post-transcriptional gene regulation associated with different physiological events such as metabolism, stress, etc. The freshwater catfish, Clarias magur, can grow within hyper ammonia containing stagnant water bodies and/or muddy substratum. We intended to identify organ-specific miRNAs associated with ammonia stress management.

View Article and Find Full Text PDF

A thorough investigation of the water permeability of aquaporin 1 (hfAQP1) in a hypertonic environment can provide a useful insight into the understanding of the underlying molecular mechanism of its high tolerance to salinity. Here, we constructed a 3 D homology model of hfAQP1 by taking AQP1, AQP0, and human AQP2 as templates using I-TASSER. The model obtained has similar structural organizations with mammalian AQP1s in all aspects.

View Article and Find Full Text PDF

The deduced amino acid sequences from the complete cDNA coding sequences of three antioxidant enzyme genes (sod1, sod2, and cat) demonstrated that phylogenetically the magur catfish (Clarias magur) is very much close to other bony fishes with complete conservation of active site residues among piscine, amphibian, and mammalian species. The three-dimensional structures of three antioxidant enzyme proteins are very much similar to mammalian counterparts, thereby suggesting the functional similarities of these enzymes. Exposure to ZnO NPs resulted in an oxidative stress as evidenced by an initial sharp rise of intracellular concentrations of hydrogen peroxide (HO) and malondialdehyde (MDA) but decreased gradually at later stages.

View Article and Find Full Text PDF

Obesity induced insulin resistance is primarily regulated by the inhibitory phosphorylation of peroxisome proliferator-activated receptor γ at serine 273 (PPARγS273) which has been shown to be regulated by MEK and ERK. An upstream regulatory molecule of this pathway could be a therapeutic option. Here we analyzed the involvement of Fetuin-A (FetA), a key hepato-adipokine implicated in insulin resistance, as an upstream regulator molecule for the regulation of PPARγ inhibitory phosphorylation.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) are the master regulators of numerous biological processes. Hypoxia causes oxidative stress with severe and detrimental effects on brain function and acts as a critical initiating factor in the pathogenesis of Alzheimer's disease (AD). From the RNA-Seq in the forebrain (Fb), midbrain (Mb), and hindbrain (Hb) regions of hypoxic and normoxic zebrafish, we identified novel lncRNAs, whose potential cis targets showed involvement in neuronal development and differentiation pathways.

View Article and Find Full Text PDF

Air-breathing magur catfish () regularly face the problem of exposure to high environmental ammonia (HEA) as one of the major pollutants in their natural habitats that causes considerable toxic effects at the cellular level, including that of oxidative stress. The major objective of the present study was to demonstrate the antioxidant activity of endogenously produced nitric oxide (NO) to defend against ammonia-induced oxidative stress in primary hepatocytes of magur catfish during exposure to HEA. Exposure to NHCl (5 mmol l) led to a significant increase in intracellular ammonia concentration with a sharp rise of hydrogen peroxide (HO) and malondialdehyde (MDA) concentrations within 3 h in primary hepatocytes, which decreased gradually at later stages of treatment.

View Article and Find Full Text PDF

The air-breathing magur catfish (Clarias magur) is a potential ureogenic teleost because of its functional ornithine-urea cycle (OUC), unlike typical freshwater teleosts. The ability to convert ammonia waste to urea was a significant step towards land-based life forms from aquatic predecessors. Here we investigated the molecular characterization of some OUC genes and the molecular basis of stimulation of ureogenesis via the OUC in magur catfish.

View Article and Find Full Text PDF

A Ru(II) complex () of a substituted pyridyl-1,2,3-triazole ligand () for highly selective "light-up" detection of hypochlorous acid is presented. An unusual anti-Markovnikov HOCl addition to the C═C bond of 1,2,3-triazole and a highly specific C(sp)-H hydroxylation over epoxidation made a highly selective luminescent HOCl probe. The abnormal regio- and stereoselective HOCl addition and subsequent hydroxylation mechanism in detail is supported by the combination of ESI-MS, H/C NMR spectroscopy, and H NMR titration.

View Article and Find Full Text PDF

Context: Relation of inferior alveolar nerve to the impacted mandibular third molars (IMTMs).

Aims: The aim of this study was to assess the reliability of seven specific radiographic signs of mandibular third molar root that are observed on orthopantomography (OPG) and to predict the proximity and the absence of corticalization between the mandibular canal and IMTM root on cone-beam computed tomography (CBCT) images.

Settings And Design: The present study was conducted in the Department of Oral and Maxillofacial Surgery, Raja Rajeswari Dental College and Hospital.

View Article and Find Full Text PDF

The facultative air-breathing magur catfish (Clarias magur) frequently face different environmental challenges, such as hyper-ammonia, and desiccation stresses in their natural habitats. All these stresses lead to higher accumulation of body ammonia, thereby causing various harmful effects to the fish due to its toxicity. Nonetheless, the mechanisms underlying ammonia-induced toxicity is yet not clear.

View Article and Find Full Text PDF

The facultative air-breathing magur catfish (Clarias magur) regularly encounter various environmental challenges including the exposure to nanomaterials discarded as industrial wastes in water bodies. The present investigation aimed at determining the possible ZnO NP-induced oxidative stress and also the antioxidant strategy of nitric oxide (NO), generated endogenously, in primary hepatocytes of magur catfish. Exposure of primary hepatocytes to different concentrations of ZnO NPs (5 and 10 μg/mL) led to a sharp rise of intracellular concentrations of hydrogen peroxide (HO) and malondialdehyde (MDA) within 6 h, which decreased gradually at later stages.

View Article and Find Full Text PDF

Nitric oxide (NO) is an important signalling molecule that plays diverse physiological functions in several vertebrates including that of adaptation to various stressful stimuli. The air-breathing magur catfish (Clarias magur) is known to tolerate a very high external ammonia (HEA) stress in its natural habitats. We report here the possible induction of inducible nitric oxide (inos) gene and more generation of NO in magur catfish exposed to HEA.

View Article and Find Full Text PDF

The present study demonstrates the unique presence of three different gs genes (cmgs01, cmgs02, and cmgs03) in air-breathing ureogenic magur catfish (Clarias magur), which is otherwise reported to be encoded by a single gene in higher vertebrates. Of these three genes, two (cmgs01and cmgs03) were identified as 'liver' form, predominantly expressed in liver cells, and the third one as 'brain' form (cmgs02), expressed chiefly in brain cells. Molecular characterization studies have revealed conservation of homologous active site residues in all the three gs genes.

View Article and Find Full Text PDF

The magur catfish (Clarias magur) is a facultative air-breather and regularly encounters with various environmental changes along with exposure to various bacterial pathogens in its natural habitats. Occurrence of various biochemical adaptational strategies related to nitrogen metabolism in magur catfish is already known. The present investigation aimed at determining the possible induction of inducible nitric oxide synthase (inos) gene and stimulation of nitric oxide (NO) production in this catfish while challenging with lipopolysaccharide (LPS, a bacterial endotoxin) treatment, and also to determine the involvement of nuclear factor kappa B (NFkB) in induction of inos gene.

View Article and Find Full Text PDF

Arginase (ARG) catalyzes the final step of ornithine-urea cycle (OUC) leading to a conversion of L-arginine to L-ornithine and urea. Several isoforms of ARG have been reported in vertebrates, out of which the two predominant isoforms are the cytosolic ARG1 and the mitochondrial ARG2. The air-breathing walking catfish (Clarias batrachus) is frequently being challenged by different environmental insults such as hyper-ammonia, dehydration and osmotic stresses in their natural habitats throughout the year.

View Article and Find Full Text PDF

The obligatory air-breathing mud eel (Monopterus cuchia) is frequently being challenged with high environmental ammonia (HEA) exposure in its natural habitats. The present study investigated the possible induction of heat shock protein 70 and 90 (hsp70, hsc70, hsp90α and hsp90β) genes and more expression of Hsp70 and Hsp90 proteins under ammonia stress in different tissues of the mud eel after exposure to HEA (50 mM NHCl) for 14 days. HEA resulted in significant accumulation of toxic ammonia in different body tissues and plasma, which was accompanied with the stimulation of oxidative stress in the mud eel as evidenced by more accumulation of malondialdehyde (MDA) and hydrogen peroxide (HO) during exposure to HEA.

View Article and Find Full Text PDF

The air-breathing singhi catfish (Heteropneustes fossilis) is frequently being challenged by bacterial contaminants, and different environmental insults like osmotic, hyper-ammonia, dehydration and oxidative stresses in its natural habitats throughout the year. The main objectives of the present investigation were to determine (a) the possible induction of inducible nitric oxide synthase (iNOS) gene with enhanced production of nitric oxide (NO) by intra-peritoneal injection of lipopolysaccharide (LPS) (a bacterial endotoxin), and (b) to determine the effects of hepatic cell volume changes due to anisotonicity or by infusion of certain metabolites, stress hormones and by induction of oxidative stress on production of NO from the iNOS-induced perfused liver of singhi catfish. Intra-peritoneal injection of LPS led to induction of iNOS gene and localized tissue specific expression of iNOS enzyme with more production and accumulation of NO in different tissues of singhi catfish.

View Article and Find Full Text PDF

Effect of environmental hypertonicity, due to exposure to 300 mM mannitol solution for 7 days, on the induction of ureogenesis and also on amino acid metabolism was studied in the air-breathing walking catfish, C. batrachus, which is already known to have the capacity to face the problem of osmolarity stress in addition to other environmental stresses in its natural habitats. Exposure to hypertonic mannitol solution led to reduction of ammonia excretion rate by about 2-fold with a concomitant increase of urea-N excretion rate by about 2-fold.

View Article and Find Full Text PDF

The air-breathing singhi catfish (Heteropneustes fossilis) is frequently being challenged by different environmental insults such as hyper-ammonia, dehydration and osmotic stresses in their natural habitats throughout the year. The present study investigated the effect of hyperosmotic stress, due to exposure to hypertonic environment (300 mM mannitol) for 14 days, on gluconeogenesis in this catfish. In situ exposure to hypertonic environment led to significant stimulation of gluconeogenic fluxes from the perfused liver after 7 days of exposure, followed by further increase after 14 days in presence of three different potential gluconeogenic substrates (lactate, pyruvate and glutamate).

View Article and Find Full Text PDF

The possible occurrence of a functional ornithine-urea cycle (OUC) and changes of activity of key amino acid metabolism-related enzymes were studied in the amphihaline shad hilsa (Tenualosa ilisha) that were collected from estuarine water of Kakdwip and from freshwater river basin of Bhrahmaputra during the breeding season. Very high concentration of urea was detected in different tissues and plasma of shad hilsa collected from estuarine water compared to the one collected from freshwater river basin. This observation clearly suggests that the shad hilsa has the potential of synthesizing and retaining urea inside the body for the purpose of osmoregulation while living in hypertonic saline environment of estuary.

View Article and Find Full Text PDF

Nitric oxide (NO) is known to be an important regulator molecule for regulating the multiple signaling pathways and also to play diverse physiological functions in mammals including that of adaptation to various stresses. The present study reports on the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS) enzyme that produces NO from l-arginine in the freshwater air-breathing catfish (Heteropneustes fossilis) while dwelling inside the mud peat under semidry conditions. Desiccation stress, due to mud-dwelling for 2 weeks, led to significant increase of NO concentration in different tissues and in plasma of singhi catfish, and also the increase of NO efflux from the perfused liver with an accompanying increase of toxic ammonia level in different tissues.

View Article and Find Full Text PDF