Publications by authors named "Nirmal K Phulwani"

MyD88 KO (knockout) mice are exquisitely sensitive to CNS (central nervous system) infection with Staphylococcus aureus, a common aetiological agent of brain abscess, exhibiting global defects in innate immunity and exacerbated tissue damage. However, since brain abscesses are typified by the involvement of both activated CNS-resident and infiltrating immune cells, in our previous studies it has been impossible to determine the relative contribution of MyD88-dependent signalling in the CNS compared with the peripheral immune cell compartments. In the present study we addressed this by examining the course of S.

View Article and Find Full Text PDF

Astrocytes participate in CNS innate immune responses as evident by their ability to produce a wide array of inflammatory mediators upon exposure to diverse stimuli. Although we have established that astrocytes use TLR2 to signal inflammatory mediator production in response to Staphylococcus aureus, a common etiological agent of CNS infections, the signal transduction pathways triggered by this pathogen and how TLR2 expression is regulated remain undefined. Three disparate inhibitors that block distinct steps in the NF-kappaB pathway, namely SC-514, BAY 11-7082, and caffeic acid phenethyl ester, attenuated NO, TNF-alpha, and CXCL2 release from S.

View Article and Find Full Text PDF

Microglia and astrocytes express numerous members of the Toll-like receptor (TLR) family that are pivotal for recognizing conserved microbial motifs expressed by a wide array of pathogens. Despite the critical role for TLRs in pathogen recognition, when dysregulated these pathways can also exacerbate CNS tissue destruction. Therefore, a critical balance must be achieved to elicit sufficient immunity to combat CNS infectious insults and downregulate these responses to avoid pathological tissue damage.

View Article and Find Full Text PDF

Besides their traditional role in maintaining CNS homeostasis, astrocytes also participate in innate immune responses. Indeed, we have previously demonstrated that astrocytes are capable of recognizing bacterial pathogens such as Staphylococcus aureus, a common etiologic agent of CNS infections, and respond with the robust production of numerous proinflammatory mediators. Suppression of Poly (ADP-ribose) polymerase-1 (PARP-1), a DNA repair enzyme, has been shown to attenuate inflammatory responses in several cell types including mixed glial cultures.

View Article and Find Full Text PDF

Brain abscesses result from a pyogenic parenchymal infection commonly initiated by Gram-positive bacteria such as Staphylococcus aureus. Although the host immune response elicited following infection is essential for effective bacterial containment, this response also contributes to the significant loss of brain parenchyma by necrosis that may be reduced by modulating the inflammatory response. Ciglitazone, a PPAR-gamma agonist with anti-inflammatory properties, was evaluated for its ability to influence the course of brain abscess development when treatment was initiated 3 days following infection.

View Article and Find Full Text PDF

Microglia represent one effector arm of CNS innate immunity as evident by their role in pathogen recognition. We previously reported that exposure of microglia to Staphylococcus aureus (S. aureus), a prevalent CNS pathogen, led to elevated Toll-like receptor 2 (TLR2) expression, a pattern recognition receptor capable of recognizing conserved structural motifs associated with gram-positive bacteria such as S.

View Article and Find Full Text PDF

Minocycline exerts beneficial immune modulatory effects in several noninfectious neurodegenerative disease models; however, its potential to influence the host immune response during central nervous system bacterial infections, such as brain abscess, has not yet been investigated. Using a minocycline-resistant strain of Staphylococcus aureus to dissect the antibiotic's bacteriostatic versus immune modulatory effects in a mouse experimental brain abscess model, we found that minocycline significantly reduced mortality rates within the first 24 hours following bacterial exposure. This protection was associated with a transient decrease in the expression of several proinflammatory mediators, including interleukin-1beta and CCL2 (MCP-1).

View Article and Find Full Text PDF

Brain abscesses form in response to a parenchymal infection by pyogenic bacteria, with Staphylococcus aureus representing a common etiologic agent of human disease. Numerous receptors that participate in immune responses to bacteria, including the majority of TLRs, the IL-1R, and the IL-18R, use a common adaptor molecule, MyD88, for transducing activation signals leading to proinflammatory mediator expression and immune effector functions. To delineate the importance of MyD88-dependent signals in brain abscesses, we compared disease pathogenesis using MyD88 knockout (KO) and wild-type (WT) mice.

View Article and Find Full Text PDF

Brain abscesses arise from a focal parenchymal infection by various pathogens, particularly Staphylococcus aureus. We have shown that astrocytes are activated upon exposure to S. aureus and may contribute to the excessive tissue damage characteristic of brain abscess.

View Article and Find Full Text PDF