J Phys Condens Matter
December 2024
A key advantage of combining the exceptional properties of graphene with conducting polymers, lies in their remarkable property tunability through filler additions into polymer matrices, with synthesis routes playing a crucial role in shaping their characteristics. In this work, we examine the electronic properties of polyaniline and graphene nanocomposites synthesized via a simple solution mixing method, which offers advantages such as ease of use and efficiency. Increasing graphene content enhances nanocomposite conductivity, and a percolation effect is observed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2024
Two-dimensional (2D) halide perovskites have demonstrated impressive long-term stability and superior device performance as compared to their three-dimensional (3D) counterparts. The potential of 2D halide perovskites for advanced photovoltaic applications can be enhanced by an understanding of how external factors like strain could be used to tune their optoelectronic properties. This study explores the effects of biaxial strain on the structure and electronic transport properties of 2D halide perovskites, focusing on the lowest energy (001) surfaces of (CsBCl and CsBCl, B = Pb or Sn) with CsCl and BCl terminations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2023
Two-dimensional (2D) materials are promising candidates for next-generation battery technologies owing to their high surface area, excellent electrical conductivity, and lower diffusion energy barriers. In this work, we use first-principles density functional theory to explore the potential for using a 2D honeycomb lattice of aluminum, referred to as aluminene, as an anode material for metal-ion batteries. The metallic monolayer shows strong adsorption for a range of metal atoms, i.
View Article and Find Full Text PDFTwo-dimensional (2D) materials have shown promise as highly selective, ultrathin membranes to transport ions, and atomic and subatomic particles. They have also been regarded as potential hydrogen storage candidates due to their chemical stability and high specific surface area. However, most of these studies have been carried out with semiconducting 2D materials.
View Article and Find Full Text PDFCharge transport in organic thin films which are generally polycrystalline is typically limited by the localization of the carriers at lattice defects resulting in low carrier mobilities and carriers move from one state to another state by hopping. However, charge transport in organic semiconductors in their single crystalline phase is coherent due to band conduction and mobilities are not limited by disorder resulting in higher carrier mobility. So it is a challenge to enhance the carrier mobility in a thin film which is the preferred choice for all organic devices.
View Article and Find Full Text PDFWe demonstrate formation of material consisting of three-dimensional Germanium nanowire network embedded in an insulating alumina matrix. A wide range of such nanowire networks is produced using a simple magnetron sputtering deposition process. We are able to vary the network parameters including its geometry as well as the length and width of the nanowires.
View Article and Find Full Text PDFOptoelectronic applications with transparent conducting oxides have been made possible by modulating the carrier density of wide band gap oxides with doping. We demonstrate the modulation of the density of states (DOS) at the Fermi level in nanocrystalline CuAlO particles synthesized using a sol-gel technique, as a function of doping with a magnetic impurity (Ni). This behavior is directly correlated with structural studies using X-ray diffraction and magnetic properties which show a similar trend.
View Article and Find Full Text PDFColloidal quantum dot arrays with long organic ligands have better packing order than those with short ligands but are highly resistive, making low-bias conductance measurements impossible with conventional two-probe techniques. We use an integrated charge sensor to study transport in weakly coupled arrays in the low-bias regime, and we nanopattern the arrays to minimize packing disorder. We present the temperature and field dependence of the resistance for nanopatterned oleic-acid and n-butylamine-capped PbS arrays, measuring resistances as high as 10(18) Ω.
View Article and Find Full Text PDFWe present the first semiconductor nanocrystal films of nanoscale dimensions that are electrically conductive and crack-free. These films make it possible to study the electrical properties intrinsic to the nanocrystals unimpeded by defects such as cracking and clustering that typically exist in larger-scale films. We find that the electrical conductivity of the nanoscale films is 180 times higher than that of drop-cast, microscopic films made of the same type of nanocrystal.
View Article and Find Full Text PDF