Publications by authors named "Niranjanmurthi Lingappan"

The autoxidation of formaldehyde through initiation by triplet oxygen is studied via two initial steps: (1) H-atom abstraction and (2) O addition reaction. The reaction energy profiles show that the reactions are thermodynamically and kinetically demanding. A comparison of the pathways of these initial reactions and the search for a less energy-demanding pathway is presented.

View Article and Find Full Text PDF

A Pt-free nanoreactor, consisting of N-doped hollow carbon nanocapsules with encapsulated Ni nanoparticles, is developed for high-performance oxygen reduction reaction (ORR) catalyst. The nanoreactor effect improves its catalytic activity for ORR mainly in a 4e pathway. The presence of Ni nanoparticles within the nanoreactor significantly enhances the stability with a current retention of 90% after 40 h.

View Article and Find Full Text PDF

Palladium nanoparticles decorated modified reduced graphene oxide (RGO) composite was synthesized by a two-step process using 1,10-Phenanthroline (PHEN) as bridging agent. Firstly, the graphene oxide (GO) was non-covalently modified with the PHEN molecules through π-π interaction between two components. Then, the modified GO was complexed with Pd precursor and subsequently reduced from Pd2+ to Pd0 using NaBH4 to yield Pd dispersed modified RGO sheets.

View Article and Find Full Text PDF

Modified graphene oxide/poly(1-vinylimidazole) (mGO/PVIm) composites were prepared via surface-initiated free radical graft polymerization. First, the hydroxyl-enriched GO sheets were functionalized with 3-methacryloxypropyltrimethoxysilane to introduce active-vinyl groups on the GO surfaces. Subsequently, 1-vinylimidazole was chemically grafted and polymerized in the presence of mGO.

View Article and Find Full Text PDF

We demonstrated an efficient method for the fabrication of novel, flexible electrodes based on ZnO nanoflakes and nickel-cobalt layered double hydroxides (denoted as ZnONF/NiCoLDH) as a core-shell nanostructure on textile substrates for wearable energy storage devices. NiCoLDH coated ZnO nanowire (denoted as ZnONW/NiCoLDH) flexible electrodes are also prepared for comparison. As an electrode for supercapacitors, ZnONF/NiCoLDH exhibits a high specific capacitance of 1624 F g(-1), which is nearly 1.

View Article and Find Full Text PDF

Noncovalent functionalization of graphene was carried out via in-situ oxidative polymerization of poly(3-octylthiophene) (P3OT). First, graphene sheets were prepared by a modified Hummer's method and subsequently reduced with hydrazine monohydrate. The structure and morphology of the composites were investigated by using FTIR, XPS, EDX, TGA, HRTEM, FESEM and XRD measuments.

View Article and Find Full Text PDF

Nanocomposites of graphene nanosheets and poly(diphenylamine) (graphene-PDPA) were synthesized via the in-situ oxidative polymerization of diphenylamine in a sulphuric acid medium. First, graphite oxide (GO) was prepared by oxidation of natural graphite using the modified Hummer's method and subsequently reduced using hydrazine monohydrate. The as-prepared graphene sheets were noncovalently grafted with PDPA using ammonium peroxydisulphate as an oxidant.

View Article and Find Full Text PDF

Graphene nanosheets functionalized with poly(p-phenylenediamine) (PPDA) were prepared via the in-situ chemical oxidative polymerization using potassium persulphate as a catalyst. Graphene nanosheets were previously prepared by chemical reduction of exfoliated graphite oxide. The structure and morphology of the composite material were characterized by FTIR, XPS, HRTEM, FESEM and XRD, while the thermal and electrical properties were measured by TGA and a four-probe method.

View Article and Find Full Text PDF

Composite materials of multi-walled carbon nanotubes (MWNTs) and a conducting polymer, poly(3-thiophene boronic acid) (PTBA) were prepared by in-situ oxidative polymerization of TBA in the presence of MWNTs and potassium dichromate. The MWNTs which were previously surface functionalized with acid chloride groups were reacted with TBA using a simple "chemical grafting" technique. It was observed that the nanotubes were dispersed uniformly in the pi-conjugated polymer matrix and entrapped by the polymer.

View Article and Find Full Text PDF