Short peptides have emerged as versatile building blocks for supramolecular structures and hydrogels. In particular, the presence of aromatic amino acid residues and/or aromatic end groups is generally considered to be a prerequisite for initiating aggregation of short peptides into nanotubes or cross β-sheet type fibrils. However, the cationic GAG tripeptide surprisingly violates these rules.
View Article and Find Full Text PDFJ Chem Theory Comput
August 2017
Using large-scale, real-time, quantum dynamics calculations, we present a detailed analysis of electronic excitation transfer (EET) mechanisms in a multiparticle plasmonic nanoantenna system. Specifically, we utilize real-time, time-dependent, density functional tight binding (RT-TDDFTB) to provide a quantum-mechanical description (at an electronic/atomistic level of detail) for characterizing and analyzing these systems, without recourse to classical approximations. We also demonstrate highly long-range electronic couplings in these complex systems and find that the range of these couplings is more than twice the conventional cutoff limit considered by Förster resonance energy transfer (FRET)-based approaches.
View Article and Find Full Text PDFA deep-blue-emitting sultam-based hetero[5]helicene was synthesized in four steps, and its crystal structure and physical properties were characterized. The helicene displays more than two-fold crystallization-induced emission enhancement as well as atypical blue-shifting of its solid-state emission relative to the solution phase. This rapid synthesis of an unusual sulfonamide-based helicene fluorophore is expected to generate new molecular design options that will help address the ongoing challenges associated with designing pure-blue emitters for organic optoelectronic and sensing applications.
View Article and Find Full Text PDFWe present a detailed analysis of nonempirically tuned range-separated functionals, with both short- and long-range exchange, for calculating the static linear polarizability and second hyperpolarizabilities of various polydiacetylene (PDA) and polybutatriene (PBT) oligomers. Contrary to previous work on these systems, we find that the inclusion of some amount of short-range exchange does improve the accuracy of the computed polarizabilities and second hyperpolarizabilities. Most importantly, in contrast to prior studies on these oligomers, we find that the lowest-energy electronic states for PBT are not closed-shell singlets, and enhanced accuracy with range-separated DFT can be obtained by allowing the system to relax to a lower-energy broken-symmetry solution.
View Article and Find Full Text PDFUsing large-scale DFT calculations (up to 1476 atoms and 18 432 orbitals), we present the first detailed analysis on the unusual electronic properties of recently synthesized porphyrin nanotubes. We surprisingly observe extremely large oscillations in the bandgap of these nanostructures as a function of size, in contradiction to typical quantum confinement effects (i.e.
View Article and Find Full Text PDFJ Chem Theory Comput
November 2015
Dispersion interactions play a crucial role in noncovalently bound molecular systems, and recent studies have shown that dispersion effects are also critical for accurately describing covalently bound solids. While most studies on bulk solids have solely focused on equilibrium properties (lattice constants, bulk moduli, and cohesive energies), there has been little work on assessing the importance of dispersion effects for solid-state properties far from equilibrium. In this work, we present a detailed analysis of both equilibrium and highly nonequilibrium properties (tensile strengths leading to fracture) of various palladium-hydride systems using representative DFT methods within the LDA, GGA, DFT-D2, DFT-D3, and nonlocal vdw-DFT families.
View Article and Find Full Text PDFConformational ensembles of individual amino acid residues within model GxG peptides (x representing different amino acid residues) are dominated by a mixture of polyproline II (pPII) and β-strand like conformations. We recently discovered rather substantial differences between the enthalpic and entropic contributions to this equilibrium for different amino acid residues. Isoleucine and valine exceed all other amino acid residues in terms of their rather large enthalpic stabilization and entropic destabilization of polyproline II.
View Article and Find Full Text PDF