Background: Reactive Red (RR) 141 dye is widely used in various industrial applications, but its environmental impact remains a growing concern. In this study, the phytotoxic and genotoxic effects of RR 141 dye on mung bean seedlings (Vigna radiata (L.) Wilczek) were investigated, serving as a model for potential harm to plant systems.
View Article and Find Full Text PDFA total of 37 bacterial isolates were obtained from dye-contaminated soil samples at a textile processing factory in Nakhon Ratchasima Province, Thailand, and the potential of the isolates to decolorize and biotransform azo dye Reactive Red 141 (RR141) was investigated. The most potent bacterium was identified as KKW2-005, which showed the ability to decolorize 96.45% of RR141 (50 mg/l) within 20 h under static conditions at pH 8.
View Article and Find Full Text PDFThis research involved the adsorption of synthetic reactive dye wastewater (SRDW) by chitin modified by sodium hypochlorite and original chitin in batch experiments. The comparison of maximum adsorption capacity used the Langmuir model to describe SRDW adsorption onto chitin and modified chitin under a system pH of 11.0.
View Article and Find Full Text PDFJ Colloid Interface Sci
June 2005
Chitosan was able to remove the color from synthetic reactive dye wastewater (SRDW) under acidic and caustic conditions. The effect of the initial pH on SRDW indicated that electrostatic interaction occurred between the effective functional groups (amino groups) and the dye under acidic conditions. Moreover, SRDW adsorption under caustic conditions was also affected by the covalent bonding of dye and hydroxyl groups of chitosan.
View Article and Find Full Text PDF