Publications by authors named "Niraja Bapat"

It is not a stretch to say that the search for extraterrestrial life is possibly the biggest of the cosmic endeavors that humankind has embarked upon. With the continued discovery of several Earth-like exoplanets, the hope of detecting potential biosignatures is multiplying amongst researchers in the astrobiology community. However, to be able to discern these signatures as being truly of biological origin, we also need to consider their probable abiotic origin.

View Article and Find Full Text PDF

Nucleic acid segregation and compartmentalization were likely essential functions that primitive compartment systems resolved during evolution. Recently, polyester microdroplets generated from dehydration synthesis of various α-hydroxy acids (αHA) were suggested as potential primitive compartments. Some of these droplets can differentially segregate and compartmentalize organic dyes, proteins, and nucleic acids.

View Article and Find Full Text PDF

Prebiotic chemists often study how modern biopolymers, e.g., peptides and nucleic acids, could have originated in the primitive environment, though most contemporary biomonomers don't spontaneously oligomerize under mild conditions without activation or catalysis.

View Article and Find Full Text PDF

The RNA world hypothesis, although a viable one regarding the origin of life on earth, has so far failed to provide a compelling explanation for the synthesis of RNA enzymes from free nucleotides via abiotic processes. To tackle this long-standing problem, we develop a realistic model for the onset of the RNA world, using experimentally determined rates for polymerization reactions. We start with minimal assumptions about the initial state that only requires the presence of short oligomers or just free nucleotides and consider the effects of environmental cycling by dividing a day into a dry, semi-wet and wet phases that are distinguished by the nature of reactions they support.

View Article and Find Full Text PDF

The prebiotic soup of a putative 'RNA World' would have been replete with a plethora of molecules resulting from complex chemical syntheses and exogeneous delivery. The presence of background molecules could lead to molecular crowding, potentially affecting the course of the reactions facilitated therein. Using NMR spectroscopy, we have analyzed the effect of crowding on the stacking ability of RNA monomers.

View Article and Find Full Text PDF

Polymerization of nucleotides under prebiotically plausible conditions has been a focus of several origins of life studies. Non-activated nucleotides have been shown to undergo polymerization under geothermal conditions when subjected to dry-wet cycles. They do so by a mechanism similar to acid-catalyzed ester-bond formation.

View Article and Find Full Text PDF

Accurate replication of encoded information would have been crucial for the formation and propagation of functional ribozymes during the early evolution of life. Studies aimed at understanding prebiotically pertinent nonenzymatic reactions have predominantly used activated nucleotides. However, the existence of concentrated pools of activated monomers on prebiotic Earth is debatable.

View Article and Find Full Text PDF

The widely acknowledged 'RNA world' theory pertains to how life might have chemically originated on early Earth. It presumes the existence of catalytic RNAs, which were also capable of storing and propagating genetic information. Substantial research has gone into understanding how enzyme-free reactions of nucleic acids might have led to the formation of such catalytic RNA polymers.

View Article and Find Full Text PDF