Publications by authors named "Niraj R Mehta"

In addition to supporting rapid nerve conduction, myelination nurtures and stabilizes axons and protects them from acute toxic insults. One myelin molecule that protects and sustains axons is myelin-associated glycoprotein (MAG). MAG is expressed on the innermost wrap of myelin, apposed to the axon surface, where it interacts with axonal receptors that reside in lateral membrane domains including gangliosides, the glycosylphosphatidylinositol-anchored Nogo receptors, and β1-integrin.

View Article and Find Full Text PDF

Myelin-associated glycoprotein (MAG), a protein expressed on the innermost wrap of myelin, contributes to long-term axon stability as evidenced by progressive axon degeneration in Mag-null mice. Recently, MAG was also found to protect axons from acute toxic insults. In the current study, rat dorsal root ganglion neurons were cultured on control substrata and substrata adsorbed with myelin proteins.

View Article and Find Full Text PDF

Progressive axonal degeneration follows demyelination in many neurological diseases, including multiple sclerosis and inherited demyelinating neuropathies, such as Charcot-Marie-Tooth disease. One glial molecule, the myelin-associated glycoprotein (MAG), located in the adaxonal plasmalemma of myelin-producing cells, is known to signal to the axon and to modulate axonal caliber through phosphorylation of axonal neurofilament proteins. This report establishes for the first time that MAG also promotes resistance to axonal injury and prevents axonal degeneration both in cell culture and in vivo.

View Article and Find Full Text PDF

In the injured nervous system, myelin-associated glycoprotein (MAG) on residual myelin binds to receptors on axons, inhibits axon outgrowth, and limits functional recovery. Conflicting reports identify gangliosides (GD1a and GT1b) and glycosylphosphatidylinositol-anchored Nogo receptors (NgRs) as exclusive axonal receptors for MAG. We used enzymes and pharmacological agents to distinguish the relative roles of gangliosides and NgRs in MAG-mediated inhibition of neurite outgrowth from three nerve cell types, dorsal root ganglion neurons (DRGNs), cerebellar granule neurons (CGNs), and hippocampal neurons.

View Article and Find Full Text PDF