Publications by authors named "Niraj Khemka"

Epileptogenesis is the process by which a normal brain becomes hyperexcitable and capable of generating spontaneous recurrent seizures. The extensive dysregulation of gene expression associated with epileptogenesis is shaped, in part, by microRNAs (miRNAs) - short, non-coding RNAs that negatively regulate protein levels. Functional miRNA-mediated regulation can, however, be difficult to elucidate due to the complexity of miRNA-mRNA interactions.

View Article and Find Full Text PDF

Objective: Sporadic and familial amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disease that results in loss of motor neurons and, in some patients, associates with frontotemporal dementia (FTD). Apart from the accumulation of proteinaceous deposits, emerging literature indicates that aberrant mitochondrial bioenergetics may contribute to the onset and progression of ALS/FTD. Here we sought to investigate the pathophysiological signatures of mitochondrial dysfunction associated with ALS/FTD.

View Article and Find Full Text PDF

The integrated transcriptome data analyses suggested the plausible roles of lncRNAs during seed development in chickpea. The candidate lncRNAs associated with QTLs and those involved in miRNA-mediated seed size/weight determination in chickpea have been identified. Long non-coding RNAs (lncRNAs) are important regulators of various biological processes.

View Article and Find Full Text PDF

Purpose: Regorafenib (REG) is approved for the treatment of metastatic colorectal cancer, but has modest survival benefit and associated toxicities. Robust predictive/early response biomarkers to aid patient stratification are outstanding. We have exploited biological pathway analyses in a patient-derived xenograft (PDX) trial to study REG response mechanisms and elucidate putative biomarkers.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are non-coding small RNAs that regulate gene expression at transcriptional and post-transcriptional levels. The role of miRNAs in seed development and seed size/weight determination is poorly understood in legumes. In this study, we profiled miRNAs at seven successive stages of seed development in a small-seeded and a large-seeded chickpea cultivar via small RNA sequencing.

View Article and Find Full Text PDF

Seed development is orchestrated via complex gene regulatory networks and pathways. Epigenetic factors may also govern seed development and seed size/weight. Here, we analyzed DNA methylation in a large-seeded chickpea cultivar (JGK 3) during seed development stages.

View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) are noncoding RNAs with transcript length more than 200 nucleotides. Although poorly conserved, lncRNAs are expressed across diverse species, including plants and animals, and are known to be involved in regulation of various biological processes. To understand their biological significance, we first need to identify the lncRNAs accurately.

View Article and Find Full Text PDF

In recent years, rapid advancement has been done in generation of genomic resources for the important legume crop chickpea. Here, we provide an update on important advancements made on availability of genomic resources for this crop. The availability of reference genome and transcriptome sequences, and resequencing of several accessions have enabled the discovery of gene space and molecular markers in chickpea.

View Article and Find Full Text PDF

DNA methylation is widely known to regulate gene expression in eukaryotes. Here, we unraveled DNA methylation patterns in cultivated chickpea to understand the regulation of gene expression in different organs. We analyzed the methylation pattern in leaf tissue of wild chickpea too, and compared it with cultivated chickpea.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) make up a significant portion of non-coding RNAs and are involved in a variety of biological processes. Accurate identification/annotation of lncRNAs is the primary step for gaining deeper insights into their functions. In this study, we report a novel tool, PLncPRO, for prediction of lncRNAs in plants using transcriptome data.

View Article and Find Full Text PDF

Non-coding RNAs constitute a major portion of the transcriptome in most of eukaryotes. Long non-coding transcripts originating from the DNA segment present between the protein coding genes are termed as long intergenic non-coding RNAs (lincRNAs). Several evidences suggest the role of lincRNAs in regulation of various biological processes.

View Article and Find Full Text PDF