Publications by authors named "Niraj K Vishwakarma"

Soy protein isolate (SPI) has received widespread attention of the biomedical research community primarily due to its good biocompatibility, biodegradability, high availability and low cost. Herein, glutaraldehyde cross-linked microporous sponge-like SPI scaffolds were prepared using the cryogelation technique for tissue engineering applications. The prepared SPI scaffolds possess an interconnected porous structure with approximately 90% porosity and an average pore size in the range of 45-92 μm.

View Article and Find Full Text PDF

Chickpea is considered recalcitrant to in vitro tissue culture amongst all edible legumes. The clustered, regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-based genome editing in chickpea can remove the bottleneck of limited genetic variation in this cash crop, which is rich in nutrients and protein. However, generating stable mutant lines using CRISPR/Cas9 requires efficient and highly reproducible transformation protocols.

View Article and Find Full Text PDF

Oil spillage has damaged public health noticeably and contributed to significant environmental deterioration. As a result, a significant amount of effort has been spent on investigating and developing the sorbent materials capable of separating oil from water. Thus, the sorbent materials that could be effective particularly in oil spill disposal and resolve such environmental issue remain to be explored.

View Article and Find Full Text PDF

Bone tissue engineering is an emerging technology that has been developed in recent years to address bone abnormalities by repairing, regenerating and replacing damaged/injured tissues. In present work, we report the fabrication and characterization of porous luffa-based composite scaffolds composed of (sponge gourd) powder (LC)/hydroxyapatite (HA), psyllium husk (PH) and gelatin (G) in various combinations (w/v) i.e.

View Article and Find Full Text PDF

In this work, polyvinyl alcohol (PVA)- and soy protein isolate (SPI)-based scaffolds were prepared by physical cross-linking using the freeze-thaw method. The PVA/SPI ratio was varied to examine the individual effects of the two constituents. The physicochemical properties of the fabricated scaffolds were analyzed through Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry.

View Article and Find Full Text PDF

Cytokinin group of phytohormones regulate root elongation and branching during post-embryonic development. Cytokinin-degrading enzymes cytokinin oxidases/dehydrogenases (CKXs) have been deployed to investigate biological activities of cytokinin and to engineer root growth. We expressed chickpea cytokinin oxidase 6 (CaCKX6) under the control of a chickpea root-specific promoter of CaWRKY31 in Arabidopsis thaliana and chickpea having determinate and indeterminate growth patterns, respectively, to study the effect of cytokinin depletion on root growth and drought tolerance.

View Article and Find Full Text PDF

Many efforts have been made on stimuli-responsive switchable catalysis to trigger catalytic activity over various chemical reactions. However, the reported light-, pH- or chemically responsive organocatalysts are mostly incomplete in the aspects of shielding efficiency and long-term performance. Here, we advance the flow-assisted switchable catalysis of metal ions in a microenvelope system that allows  the on-off catalysis mode on demand for long-lasting catalytic activity.

View Article and Find Full Text PDF

Simultaneous capture of carbon dioxide (CO) and its utilization with subsequent work-up would significantly enhance the competitiveness of CO-based sustainable chemistry over petroleum-based chemistry. Here we report an interfacial catalytic reaction platform for an integrated autonomous process of simultaneously capturing/fixing CO in gas-liquid laminar flow with subsequently providing a work-up step. The continuous-flow microreactor has built-in silicon nanowires (SiNWs) with immobilized ionic liquid catalysts on tips of cone-shaped nanowire bundles.

View Article and Find Full Text PDF

Exploration and expansion of the chemistries involving toxic or carcinogenic reagents are severely limited by the health hazards their presence poses. Here, we present a micro-total envelope system (μ-TES) and an automated total process for the generation of the carcinogenic reagent, its purification and its utilization for a desired synthesis that is totally enveloped from being exposed to the carcinogen. A unique microseparator is developed on the basis of SiNWs structure to replace the usual exposure-prone distillation in separating the generated reagent.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Niraj K Vishwakarma"

  • - Niraj K Vishwakarma's recent research primarily focuses on developing innovative biomaterials for biomedical applications, including tissue engineering, wound management, and environmental remediation through the use of biodegradable and biocompatible materials such as soy protein isolate and luffa-based composites.
  • - His studies involve the application of advanced techniques like CRISPR/Cas9 for genetic editing in crops to enhance their desirable traits, particularly in chickpeas, addressing challenges in crop genetic variation and transformation efficiency.
  • - Vishwakarma's work also explores novel composite materials for oil sorption to mitigate environmental pollution from oil spills, alongside the characterization of functional scaffolds aimed at bone tissue engineering, emphasizing the versatility and sustainability of natural materials in various scientific fields.