Publications by authors named "Nipuni-Dhanesha H Gamage"

Glioblastoma (GBM) is a hypervascular primary brain tumor with poor prognosis. HET0016 is a selective CYP450 inhibitor, which has been shown to inhibit angiogenesis and tumor growth. Therefore, to explore novel treatments, we have generated an improved intravenous (IV) formulation of HET0016 with HPßCD and tested in animal models of human and syngeneic GBM.

View Article and Find Full Text PDF

An unprecedented mode of reactivity of Zn4 O-based metal-organic frameworks (MOFs) offers a straightforward and powerful approach to polymer-hybridized porous solids. The concept is illustrated with the production of MOF-5-polystyrene wherein polystyrene is grafted and uniformly distributed throughout MOF-5 crystals after heating in pure styrene for 4-24 h. The surface area and polystyrene content of the material can be fine-tuned by controlling the duration of heating styrene in the presence of MOF-5.

View Article and Find Full Text PDF

The synthesis, structure, and energetic materials properties of a series of aromatic peroxy acid compounds are described. Benzene-1,3,5-tris(carboperoxoic) acid is a highly sensitive primary energetic material, with impact and friction sensitivities similar to those of triacetone triperoxide. By contrast, benzene-1,4-bis(carboperoxoic) acid, 4-nitrobenzoperoxoic acid, and 3,5-dinitrobenzoperoxoic acid are much less sensitive, with impact and friction sensitivities close to those of the secondary energetic material 2,4,6-trinitrotoluene.

View Article and Find Full Text PDF

A series of oxygen-rich organic peroxide compounds each containing two bis(hydroperoxy)methylene groups is described. Energetic testing shows that these compounds are much less sensitive toward impact and friction than existing classes of organic peroxides. The compounds are highly energetic, which may lead to practical peroxide-based explosives.

View Article and Find Full Text PDF

A series of cryptands have been prepared and they demonstrate the relationship between oxidative stability of aqueous Eu and ligand properties (see figure). One of these Eu complexes is more stable than Fe in hemoglobin and appears to be the most oxidatively-stable aqueous Eu species known. The high stability of Eu is expected to enable the use of the unique magnetic and optical properties of this ion in vivo.

View Article and Find Full Text PDF